From DB-nets to
Coloured Petri Nets with Priorities

Marco Montali and Andrey Rivkin

KRDB Research Centre for Knowledge and Data
Free University of Bozen-Bolzano, Italy

unibz

From DB-nets to Coloured Petri Nets with Priorities

1/22

Process-data dichotomy

@ A well-known problem coming from the BPM community

@ The leitmotiv: how to make processes and data work together?

From DB-nets to Coloured Petri Nets with Priorities

Process-data dichotomy

@ Two research streams that address the dichotomy
» Petri nets: enrich PNs with some form of data that accounts for, e.g.,
fresh ID of objects
» Databases: enrich DBs with actions

Relational DB with constraints

From DB-nets to Coloured Petri Nets with Priorities

v-coloured Petri nets

o Almost like standard CPNs

From DB-nets to Coloured Petri Nets with Priorities

v-coloured Petri nets

o Almost like standard CPNs
e Colours ~~ data types D = (Ap,'p) from D (a finite set of types)

» Ap — a value domain (could be infinite!)
» [p — a finite set of predicate symbols
» Examples: string = (S, {=s}), int = (Z, {=int, <int, SUcc})

From DB-nets to Coloured Petri Nets with Priorities 4/22

v-coloured Petri nets

o Almost like standard CPNs

e Colours ~~ data types D = (Ap,'p) from D (a finite set of types)
» Ap — a value domain (could be infinite!)
» [p — a finite set of predicate symbols
» Examples: string = (S, {=s}), int = (Z, {=int, <int, SUcc})

e Arc inscriptions have no complex expressions, only variables

From DB-nets to Coloured Petri Nets with Priorities 4/22

v-coloured Petri nets

o Almost like standard CPNs

e Colours ~~ data types D = (Ap,'p) from D (a finite set of types)
» Ap — a value domain (could be infinite!)
» ['p — a finite set of predicate symbols
» Examples: string = (S, {=s}), int = (Z, {=nt, <int, SUcc})
e Arc inscriptions have no complex expressions, only variables
e Two kinds of (typed) variables:
» Vo — “normal’ variables
» Tp — fresh variables (a la v-PNs)
» unbounded variables in the output arc expressions account for
external input and fresh data

From DB-nets to Coloured Petri Nets with Priorities 4/22

v-coloured Petri nets

o Almost like standard CPNs

e Colours ~ data types D = (Ap,'p) from D (a finite set of types)
» Ap — a value domain (could be infinite!)
» [p — a finite set of predicate symbols
» Examples: string = (S, {=;}), int = (Z, {=int, <int, Succ})

Arc inscriptions have no complex expressions, only variables
Two kinds of (typed) variables:

» Vo — “normal’ variables

» Tp — fresh variables (a la v-PNs)

» unbounded variables in the output arc expressions account for
external input and fresh data

Guards: quantifier- and relation-free FO formulas over D's

From DB-nets to Coloured Petri Nets with Priorities 4/22

v-coloured Petri nets

A simple net for logging in users in an online shop

[-(card =")]
O (uid, card) (uid, card, Veart) Q
Users Log Logged
In
color(Users) = int x string
color(Logged) = int x string X int
e “...log in only if you have credit card data”

@ Vet € T is used to create a (globally) new shopping cart 1D

From DB-nets to Coloured Petri Nets with Priorities

5/22

Relational Database: schema

A simplified online shop database

User WithBonus
’@: int ‘ card : string‘ ’@ ;int ‘ type : string ’7:
FK_WithBonus _User {50%, 15eur, extra_item}
Product InWarehouse
’ Name : string‘ ’@ iint ‘ name : string ‘ cost : real‘

L FK_InWarehouse _Product 4‘

@ A user may have only(!) one out of three predefined bonuses

@ Product stores types of products available in the online shop

From DB-nets to Coloured Petri Nets with Priorities

6 /22

Relational Database: queries

@ Queries — FO expressions over D-typed DB schema R with explicitly
identified free (answer) variables
o Examples:

» ‘“get all products available in the warehouse and whose price has been
defined”

Qproaucts(pid, n, ¢):- Product(n) A InWarehouse(pid, n, c) A ¢ # null
> ‘get all registered users”
Qusers(uid):- Icard . User(id, card)
> ‘get all bonus holders”

Qubonus (uid, bt'):- WithBonus(uid, bt")

From DB-nets to Coloured Petri Nets with Priorities 7/22

Relational Database: updates

@ ...via parametrized atomic actions

From DB-nets to Coloured Petri Nets with Priorities

Relational Database: updates

@ ...via parametrized atomic actions
@ Specify 15t which facts to delete and 2" which facts to add

» Like in STRIPS planning
» Follow the order = avoid situations in which one fact is both added

and deleted
@ Actions are transactional
> If an action application result violates database constraints = rollback!

From DB-nets to Coloured Petri Nets with Priorities 8 /22

Relational Database: updates

How to assign a bonus to a user? Use an action ADDB(uid, bt) s.t.
@ ADDB-del = ()
e ADDB-add = { WithBonus(uid, bt)}

User

1D card

122 |5583-3290-2131-2333
184 |4419-2311-1189-9923

WithBonus
uiD type

From DB-nets to Coloured Petri Nets with Priorities 9 /22

Relational Database: updates

How to assign a bonus to a user? Use an action ADDB(uid, bt) s.t.
@ ADDB-del = ()
e ADDB-add = { WithBonus(uid, bt)}

vser
1. Uexecute ADDB(122, 50%)\:
122 |5583-3290-2131-2333) -
184 |4419-2311-1189-9923

WithBonus
uiD type

From DB-nets to Coloured Petri Nets with Priorities 9 /22

Relational Database: updates

How to assign a bonus to a user? Use an action ADDB(uid, bt) s.t.
@ ADDB-del = ()
e ADDB-add = { WithBonus(uid, bt)}

vser

1. {execute ADDB(122,50%)

122 | 5583-3290-2131-2333 N _
184 |4419-2311-1189-9923 1add WithBonus(122,50%) 1
WithBonus

uiD type

From DB-nets to Coloured Petri Nets with Priorities 9 /22

Relational Database: updates

How to assign a bonus to a user? Use an action ADDB(uid, bt) s.t.
@ ADDB-del = ()
e ADDB-add = { WithBonus(uid, bt)}

vser
1.1 1 execute ADDB(122, 50%) \:
122 |5583-3290-2131-2333 """""::::::::: ___________
184 |4419-2311-1189-9923 add WithBonus(122, 50%) '
_ 2. {execute ADDB(184,50%)
WithBonus ~ ttrtmmomoeomsomosoees
uiD type

From DB-nets to Coloured Petri Nets with Priorities 9 /22

Relational Database: updates

How to assign a bonus to a user? Use an action ADDB(uid, bt) s.t.

@ ADDB-del = ()
e ADDB-add = { WithBonus(uid, bt)}

vser

L G

122 [5583-3200-2131-2333| T

184 |4419-2311-1189-9923 k—n;h&'wliﬂéér;&s'(izz 50%) |
2. {execute ADDB(184,50%)

WithBonus ~ ttmopmmmmmmmmmeees

UD type L%&&W:Eﬂé&ﬁ&é(iéi's'd%)

P

184 | 50%

From DB-nets to Coloured Petri Nets with Priorities

9/22

Relational Database: updates

How to assign a bonus to a user? Use an action ADDB(uid, bt) s.t.

@ ADDB-del = ()
e ADDB-add = { WithBonus(uid, bt)}

vser

1. ! execute ADDB(122,50%)

122 [5583-3200-2131-2333| T

184 |4419-2311-1189-9923 k—»%&éﬁ:iﬁé&ﬂﬁsﬁzz 50%) |
2. {execute ADDB(184,50%)

WithBonus ~ ttropremomommomomoee

UD type :\—»;&&'Wéﬁé&&s—(iéi_éd%)

22 5% | o

184 | 50% 3. :\execute ADDB(122, 15eur)_:

From DB-nets to Coloured Petri Nets with Priorities

9/22

Relational Database: updates

How to assign a bonus to a user? Use an action ADDB(uid, bt) s.t.
@ ADDB-del = ()
e ADDB-add = { WithBonus(uid, bt)}

vser

L i 5]

122 [5583-3200-2131-2333| T

184 |4419-2311-1189-9923 k—n;h&'wliﬂéér;&s'(izz 50%) |
2. {execute ADDB(184,50%)

WithBonus ~ tttopmomomsmomeeee

UD type :\—»;&&'Wéﬁé&;&s—(iéi'éd%)

22 50% | o

184 | 50% 3. execute ADDB(122, 15eur) !

122 | 15eur [‘
' add WithBonus122, 15eur) !

From DB-nets to Coloured Petri Nets with Priorities 9 /22

Relational Database: updates

How to assign a bonus to a user? Use an action ADDB(uid, bt) s.t.

@ ADDB-del =)

e ADDB-add = { WithBonus(uid, bt)}

User
1D card
122 |5583-3290-2131-2333

184 |4419-2311-1189-9923

WithBonus
uiD type
122 50%
184 50%
122 15eur

constraint vioaltion:
“only one bonus per user”

From DB-nets to Coloured Petri Nets with Priorities

9/22

Relational Database: updates

How to assign a bonus to a user? Use an action ADDB(uid, bt) s.t.

@ ADDB-del = ()
e ADDB-add = { WithBonus(uid, bt)}

vser

1. {oeeute Abon(122.50%)
122 |5583-3290-2131-2333 """""::::::::: ___________
184 |4419-2311-1189-9923 add WithBonus(122, 50%)

WithBonus g o
uiD L,

type
122 50%
184 50%

100 ar
T TITaT

From DB-nets to Coloured Petri Nets with Priorities

9/22

Relational Database: updates

How to assign a bonus to a user? Use an action ADDB(uid, bt) s.t.

@ ADDB-del = ()
e ADDB-add = { WithBonus(uid, bt)}

vser
1. ! execute ADDB(122,50%)
122 [5583-3200-2131-2333| T
184 |4419-2311-1189-9923 k—»%&é'f/hiﬁééﬂﬁs_(izz 50%) |
2. {execute ADDB(184,50%)
WithBonus ~ ttropremomommomomoee
UD type :\—»_ahli' WithBonus(184,50%) |
22 5% | o
184 | 50% 3. :\execute ADDB(122, 15eur) !

From DB-nets to Coloured Petri Nets with Priorities

9/22

Relational Database: updates

How to change a user’s bonus? Use an action CHANGE(uid, bt, bt') s.t.

@ CHANGE-del = {WithBonus(uid, bt")}
@ CHANGE-add = { WithBonus(uid, bt)}

User
)
122

card
5583-3290-2131-2333

184

4419-2311-1189-9923

WithBonus

uiD
122

type
50%

184

50%

From DB-nets to Coloured Petri Nets with Priorities

10 / 22

Relational Database: updates

How to change a user’s bonus? Use an action CHANGE(uid, bt, bt') s.t.
@ CHANGE-del = {WithBonus(uid, bt")}
@ CHANGE-add = { WithBonus(uid, bt)}

vuser
:’execute CHANGE(122, 15eur, 50%)\:
122 |5583-3290-2131-2333| T TT oo TTTTTTTTTTooommmod
184 | 4419-2311-1189-9923

WithBonus
uiD type
122 50%
184 50%

From DB-nets to Coloured Petri Nets with Priorities 10 / 22

Relational Database: updates

How to change a user’s bonus? Use an action CHANGE(uid, bt, bt') s.t
@ CHANGE-del = {WithBonus(uid, bt")}
@ CHANGE-add = { WithBonus(uid, bt)}

User
)
122

card
5583-3290-2131-2333

184

4419-2311-1189-9923

WithBonus

uiD

type

From DB-nets to Coloured Petri Nets with Priorities

10 / 22

Relational Database: updates

How to change a user’s bonus? Use an action CHANGE(uid, bt, bt') s.t.
@ CHANGE-del = {WithBonus(uid, bt")}
@ CHANGE-add = { WithBonus(uid, bt)}

vuser
! ' execute CHANGE(122, 15eur, 50%) ;
122 |5583-3200-2131-2333 | "ot
184 |4419-2311-1189-9923 delete W/thBonus(122 50%)

WithBonus oo ITIIITITNITTUTTL

uiD type
122 15eur
184 50%

From DB-nets to Coloured Petri Nets with Priorities 10 / 22

DB-nets

How to account for v-CPNs and DBs + jointly respect semantics of both?

From DB-nets to Coloured Petri Nets with Priorities

DB-nets

How to account for v-CPNs and DBs + jointly respect semantics of both?

control layer

trigger

data logic layer

persistence layer

Relational DB with constraints

From DB-nets to Coloured Petri Nets with Priorities

A missing bit: view places

o “Views" over the persistence layer

o Host answers to queries from the data logic

o Clearly identify where the control layer “reads” from the persistence
layer

@ Not possible to explicitly modify by the control layer. ..

@ ...but can be implicitly modified by applying actions on the

persistence layer and recomputing the view

From DB-nets to Coloured Petri Nets with Priorities 12 /22

A (partial) DB-net example

e Part #1: a simple net for logging in users in an online shop
» A view place Users is equipped with query Qusers

- L N
Users Log
In

) <Uld>|—| <Uid,l/c> m <Llld,CICI) O

From DB-nets to Coloured Petri Nets with Priorities 13 /22

A (partial) DB-net example

e Part#2: a net for managing user bonuses
» AcquireBonus and ChangeBonus have actions assigned to them

® <uid>|—| (uid, ve) N\ (uid, cid)
&

Users Log

(uid, cid)

O Keep :I
Bonus

(uid, cid)
ADDB N\ CHANGE O
(uid, bO)YT (4id cid. bt) ~— (uid, cid, bt) | (uid,bt,)| (g, bt')
Acquire Change Bonus
q 9 Holders
Bonus Bonus

From DB-nets to Coloured Petri Nets with Priorities

13/ 22

Firing of transitions

@ (uid) — (uid, ve) /::)\ (uid, cid) Q
L

(uid, cid)

Keep
Bonus
(122,50%)
(uid, cid)
ADDB N\ CHANGE G
(uid,)T (uid, cid, bt) ~—/ (uid, cid, bt) |(uid,bt,bt') [(,iq pt') O
Acquire Change Bonus
q 9 Holders
Bonus Bonus
User WithBonus

122 |5583-3290-2131-2333 122 50%

184 (4419-2311-1189-9923

From DB-nets to Coloured Petri Nets with Priorities

14 / 22

Firing of transitions

@ (uid) — (uid, ve) /::)\ (uid, cid) Q
L

(uid, cid)

Keep
Bonus
(122,50%)
(uid, cid)
ADDB N\ CHANGE G
(uid,)| (uid, cid, bt) ~—/ (uid, cid, bt) |(uid,bt,bt') [1,iq pt') O
Acquire Change Bonus
q 9 Holders
Bonus Bonus
User WithBonus

122 |5583-3290-2131-2333 122 50%

184 (4419-2311-1189-9923

From DB-nets to Coloured Petri Nets with Priorities

14 / 22

Firing of transitions

@ (wid) — {uid,ve) ~ (uid, cid) Q
L

Users Log

(uid, cid)
(122)
(184) |: Keep

Bonus

(122,50%)

(uid, cid)
ADDB N CHANGE o]
(uid,)T (uid, cid, bt) - (uid, cid, bt) | (uid,bt,bt') [(,iq pt') O
Acquire gassans — N Change Bonus
Bonus L@ _2?’_1_6_%9_’ _1_5 ?l_”),' Bonus Holders

User WithBonus

122 |5583-3290-2131-2333 122 50%

184 (4419-2311-1189-9923

From DB-nets to Coloured Petri Nets with Priorities

14 / 22

Firing of transitions

@ (wid) — {uid,ve) ~ (uid, cid) Q
L

Users Log

(uid, cid)
(122)
(184) |: Keep

Bonus

(122,50%)

(uid, cid)
ADDB N CHANGE o]
(uid,)T (uid, cid, bt) - (uid, cid, bt) | (uid,bt,bt') | (4id bty O
Acquire gassans — N Change Bonus
Bonus L@ _2?’_1_6_%9_’ _1_5 ?l_”),' Bonus Holders

User WithBonus

122 |5583-3290-2131-2333 122 50%

184 (4419-2311-1189-9923

From DB-nets to Coloured Petri Nets with Priorities

14 / 22

Firing of transitions

@ (uid) — (uid, ve) /::)\ (uid, cid) Q
L

(uid, cid)

Keep
Bonus
(122, 15eur)
(uid, cid)
ADDB N\ CHANGE G
(uid,)T (uid, cid, bt) ~—/ (uid, cid, bt) |(uid,bt,bt') [(,iq pt') O
Acquire Change Bonus
q 9 Holders
Bonus Bonus
User WithBonus
1D card
122 |5583-3290-2131-2333 122 15eur

184 (4419-2311-1189-9923

From DB-nets to Coloured Petri Nets with Priorities

14 / 22

DB-nets

@ We know how to model and simulate DB-nets using CPN Tools +
Access/CPN + Comms/CPN. ..

» External libraries allow to fully account for actions, view places and DB

interactions
» We also know how to tame the infinity achieving decidabiluty of

verification in relevant fragments

From DB-nets to Coloured Petri Nets with Priorities 15 / 22

DB-nets

@ We know how to model and simulate DB-nets using CPN Tools +
Access/CPN + Comms/CPN. ..

@ ...but we cannot correctly generate state spaces due to limitations
of Access/CPN

» The content of view places is changed by actions and not properly
recomputed after each transition firing

From DB-nets to Coloured Petri Nets with Priorities 15 / 22

DB-nets

@ We know how to model and simulate DB-nets using CPN Tools +
Access/CPN + Comms/CPN. ..

@ ...but we cannot correctly generate state spaces due to limitations
of Access/CPN

» The content of view places is changed by actions and not properly
recomputed after each transition firing

Is it possible to avoid view places (and even actions)?

From DB-nets to Coloured Petri Nets with Priorities 15 / 22

From DB-nets to v-CPNs

o We can fully “lift” DB-nets to CPN Tools

@ That is, we map the entire DB and its management into CPN
Tools

Any limitations on queries and relational DB + constraints?

From DB-nets to Coloured Petri Nets with Priorities 16 / 22

From DB-nets to v-CPNs

o We can fully “lift” DB-nets to CPN Tools

@ That is, we map the entire DB and its management into CPN
Tools

Any limitations on queries and relational DB + constraints?

@ Stay on the safe side: DB-nets with UCQs”*, DB with PK, FK and
CHECK

> UCQS;é correspond to SELECT-FROM-WHERE SQL queries
» PKs, FKs and domain constraints are just easy to manage ©

Result: a translation into v-CPNs with priorities and extensive support of
SML (supported by CPN Tools)

From DB-nets to Coloured Petri Nets with Priorities 16 / 22

Translation

Qu, (%1) Qu, (Xm)

output places

input places rollback places

@ A database is represented using relational places
@ Other DB-net elements are actually computed on transition T firing
in 4 phases:
@ collect variable bindings and compute the content of view places
adjacent to T
@ if there is an action assigned to T, execute it
© check the satisfaction of integrity constraints
@ finish the computation and generate a new marking
@ To realize the execution of original T, all the four phases are executed
uninterruptedly (under global lock)

From DB-nets to Coloured Petri Nets with Priorities 17 / 22

Translation

input
places

Tm
£t

relation
places

ConstrOk

>~ noop b
G s B
. DoCommit DoRollback .
(£,3)

Trottback

(5.8

Teommit

AN

rollback places
18 / 22

output places

From DB-nets to Coloured Petri Nets with Priorities

Computing views using v-CPN places

An original DB-net

@\ (Pid: . c)] {cid, pid, n, c) O
-
Available Add Cart
Products Product | (yiq, cid)
(uid, cid)

InWarehouse

|PID iint | name : string | cost : real|

FK_InWarehouse _Product
Products

Qproducts(pid7 n, C)):_
Product(n) A InWarehouse(pid, n, c)A
Ac # null

From DB-nets to Coloured Petri Nets with Priorities 19 / 22

Computing views using v-CPN places

An original DB-net

O (pid, n, c) [~ (cid, pid, n, c) O

;\’ va(ijlab/e Add Cart
roducts Product <uid, Cid>
(uid, Cld> ‘

InWarehouse

|PID iint | name : string | cost : real|

FK_InWarehouse _Product
Products

Qproducts(pid7 n, C)) -

Product(n) A InWarehouse(pid, n, c)A

Ac # null

From DB-nets to Coloured Petri Nets with Priorities

An intuitive v-CPN encoding

Products [c # null]
O (pid, n, c) (cid, pid, n, c) O
InWarehouse
(uid, cid)

Add Cart
Product (uid, cid)

e Products and InWarehouse
are relational places

® Qproducts IS represented using
relational places + a guard

19 /22

Modelling RDBMS updates in v-CPNs

An original DB-net Bonus
- Holders

(uid, bt") CHANGE(uid, bt, bt'):
CHANGE-del = {WithBonus(uid, bt')}

(uid, cid, bt) CHANGE (uid, cid) :
@, > (uid, bt, bt', u) —(r - CHANGE-add = { WithBonus(uid, bt)}

Change
Bonus

From DB-nets to Coloured Petri Nets with Priorities 20 / 22

Modelling RDBMS updates in v-CPNs

An original DB-net Bonus
- Holders
(uid, bt") CHANGE(uid, bt, bt'):
(uid, cid, bt) CHANGE (uid, cid) - CHANGE-del = {WithBonus(uid, bt')}
< >—’ (uid, bt, bt', u) —(r - CHANGE-add = { WithBonus(uid, bt)}
Change
Bonus

WithBonus

An intuitive v-CPN encoding (uid, bt')

Bonus Holders

13
Change
Bonus

& = (uid, cid, bt)

Preserve update (and set) semantics via prioritized transitions that
check if a tuple to add/delete already exists in a relation place

From DB-nets to Coloured Petri Nets with Priorities

20 / 22

Modelling RDBMS updates in v-CPNs

An original DB-net Bonus
- Holders
(uid, bt") CHANGE(uid, bt, bt'):
(uid, cid, bt) CTHANGE (uid, cid) - CHANGE-del = {WithBonus(uid, bt')}
(>—’ (uid, bt, bt', u) —(r - CHANGE-add = { WithBonus(uid, bt)}
Change
Bonus

WithBonus

An intuitive v-CPN encoding (uid, bt')

Bonus Holders

13
Change
Bonus

& = (uid, cid, bt)

Auxiliary Done-places: if true, then the token has been successfully
added/deleted; false otherwise

From DB-nets to Coloured Petri Nets with Priorities

20 / 22

Modelling RDBMS updates in v-CPNs

An original DB-net Bonus
- Holders
(uid, bt") CHANGE(uid, bt, bt'):
(uid, cid, bt) GHANGE (uid, cid) - CHANGE-del = { WithBonus(uid, bt')}
O— (uid, bt, bt u) ——(OP . ciancradd— {WithBonus(uid, bt)}
Change
Bonus
WithBonus

An intuitive v-CPN encoding

(uid, bt")

Bonus Holders

$
Change
Bonus

& := (uid, cid, bt)

The update execution order is the same as for DB-nets

From DB-nets to Coloured Petri Nets with Priorities

20 / 22

Checking integrity constraints and getting a new marking

(uid, cid) .
ADDB(uid, bt):

An original DB-net ADDB —,O . ADDB-del = ()
(uid, b)Y (uid, cid, bt) >

P, - ADDB-add = { WithBonus(uid, bt)}
(uid, cid) Acquire

Bonus

From DB-nets to Coloured Petri Nets with Priorities 21 /22

Checking integrity constraints and getting a new marking

(uid, cid) .
ADDB(uid, bt):

An original DB-net ADDB () . ADDB-del =)
(uid, bt) | (id cid, bt)

p p' - ADDB-add = { WithBonus(uid, bt)}
(uid, cid) Acquire

Bonus

An intuitive -CPN encoding

[bt # 50/ A bt # 15eur A bt # extra_item) € := (uid, cid, bt)

(uid, cid, bt) .
P_High

ConstrViol

WrongValue
(uid, cid, bt)

(uid, bt)

WithBonus
(uid, cid, bt)
NoWrongValue

P_Low
1) SkipRevertA
uid, cid

@ Check integrity constraints
e If any violated, rollback all the successfully performed (i.e., marked
with true in Done-places) updates

From DB-nets to Coloured Petri Nets with Priorities 21 /22

Results

o A fragment of DB-nets with unions of conjunctive queries with
negative filters can be translated into v-CPNs with transition priorities

@ The translation produces a net that is bisimilar to the original one

From DB-nets to Coloured Petri Nets with Priorities 22 /22

Results

@ A fragment of DB-nets with unions of conjunctive queries with
negative filters can be translated into v-CPNs with transition priorities

@ The translation produces a net that is bisimilar to the original one

@ What to do with this result?
» Modelling and analyzing data-intensive applications in CPN Tools
» Study concurrency in databases
> Implement the translation in the DB-net extension
» Add more support for different types of integrity constraints
» Make our state-space abstraction technique operational in CPN Tools

From DB-nets to Coloured Petri Nets with Priorities 22 /22

Questions, please

YOU HAVE IT FOR
ETERNITY?

FREE TO ASK \VE
THING AT ALL. CLOTHES?

|
g
g
§
b
é
;
j

9-22:1] ©2011 Scott Adams, Inc. /Dist. by Unwersal Ucick

From DB-nets to Coloured Petri Nets with Priorities

