The Combinatorics of Barrier Synchronization*^a*

Petri Nets*^b* 2019 – June 23-28 – Aachen

Olivier Bodini⁽¹⁾, Matthieu Dien⁽²⁾, Antoine Genitrini⁽³⁾, **Frédéric Peschanski**⁽³⁾

(1) LIPN Institut Galilée – (2) Unicaen Greyc – (3) **Sorbonne University – LIP6**

*^a*Research partially supported by the MetACOnc project ANR-15-CE40-0014. *^b*and other (less powerful) models of concurrency

We study **concurrent systems** from the point of view of **combinatorics** specifically:

- **Enumerative combinatorics**
	- *⇒* The science of counting "composable things"
- **Order theory**

⇒ the science of *partially ordered sets* a.k.a. Posets

We study **concurrent systems** from the point of view of **combinatorics** specifically:

• **Enumerative combinatorics**

⇒ The science of counting "composable things"

• **Order theory**

⇒ the science of *partially ordered sets* a.k.a. Posets

Definition (Combinatorial class)

A set of objects associated to a notion of a (finite) **size**, and such that there is a *finite number* of objects of a given size.

We study **concurrent systems** from the point of view of **combinatorics** specifically:

• **Enumerative combinatorics**

⇒ The science of counting "composable things"

• **Order theory**

⇒ the science of *partially ordered sets* a.k.a. Posets

Definition (Combinatorial class)

A set of objects associated to a notion of a (finite) **size**, and such that there is a *finite number* of objects of a given size.

⇒ but what is the size of a concurrent process ?

A very simple calculus of *barrier synchronization*.

A very simple calculus of *barrier synchronization*.

Remark: ✓finite size , ✓finite number of objects of size *n*

0*,* α .0*,* $\langle B \rangle$ 0*,* $\nu(B)$ 0*,* α . β .0*,* ..., 0 $||$ 0*,* ..., α .0 $||$ 0*,* ...

A very simple calculus of *barrier synchronization*.

Remark: ✓finite size , ✓finite number of objects of size *n*

0*,* α .0*,* $\langle B \rangle$ 0*,* $\nu(B)$ 0*,* α .*β*.0*,* ..., 0 $||$ 0*,* ..., α .0 $||$ 0*,* ...

⇒ what about a **semantic** notion of a size?

Process behavior in a nutshell (cf. relatively "unpleasant" proof system in the paper)

 $P \stackrel{\text{defs}}{=} \nu(B)$ [$a_1 \cdot \langle B \rangle a_2 \cdot 0 \parallel \langle B \rangle b_1 \cdot 0 \parallel \langle B \rangle 0$]

⇒ synchronization on barrier *⟨B⟩* is *not* available because the leftmost process is not ready.

Process behavior in a nutshell (cf. relatively "unpleasant" proof system in the paper) $P \stackrel{\text{defs}}{=} \nu(B)$ [$a_1 \cdot \langle B \rangle a_2 \cdot 0 \parallel \langle B \rangle b_1 \cdot 0 \parallel \langle B \rangle 0$]

⇒ synchronization on barrier *⟨B⟩* is *not* available because the leftmost process is not ready.

*· · · ^a*¹ *−→ ν*(*B*) [*⟨B⟩a*2*.*0 *∥ ⟨B⟩b*1*.*0 *∥ ⟨B⟩*0]

⇒ synchronization available

Process behavior in a nutshell (cf. relatively "unpleasant" proof system in the paper) $P \stackrel{\text{defs}}{=} \nu(B)$ [$a_1 \cdot \langle B \rangle a_2 \cdot 0 \parallel \langle B \rangle b_1 \cdot 0 \parallel \langle B \rangle 0$]

⇒ synchronization on barrier *⟨B⟩* is *not* available because the leftmost process is not ready.

*· · · ^a*¹ *−→ ν*(*B*) [*⟨B⟩a*2*.*0 *∥ ⟨B⟩b*1*.*0 *∥ ⟨B⟩*0]

⇒ synchronization available

 $\cdots \rightarrow a_2.0 \parallel b_1.0 \parallel 0$ (in the paper synchronization is not a transition, but it could)

⇒ interleaving semantics

Process behavior in a nutshell (cf. relatively "unpleasant" proof system in the paper) $P \stackrel{\text{defs}}{=} \nu(B)$ [$a_1 \cdot \langle B \rangle a_2 \cdot 0 \parallel \langle B \rangle b_1 \cdot 0 \parallel \langle B \rangle 0$]

⇒ synchronization on barrier *⟨B⟩* is *not* available because the leftmost process is not ready.

*· · · ^a*¹ *−→ ν*(*B*) [*⟨B⟩a*2*.*0 *∥ ⟨B⟩b*1*.*0 *∥ ⟨B⟩*0]

⇒ synchronization available

 $\cdots \rightarrow a_2.0 \parallel b_1.0 \parallel 0$ (in the paper synchronization is not a transition, but it could)

⇒ interleaving semantics

· · · $\xrightarrow{a_2}$ *b*₁ *o* 0 or *·* · *· <u><i>b*₁ *a*₂ ∂ 0</u>

Process behavior in a nutshell (cf. relatively "unpleasant" proof system in the paper) $P \stackrel{\text{defs}}{=} \nu(B)$ [$a_1 \cdot \langle B \rangle a_2 \cdot 0 \parallel \langle B \rangle b_1 \cdot 0 \parallel \langle B \rangle 0$]

⇒ synchronization on barrier *⟨B⟩* is *not* available because the leftmost process is not ready.

*· · · ^a*¹ *−→ ν*(*B*) [*⟨B⟩a*2*.*0 *∥ ⟨B⟩b*1*.*0 *∥ ⟨B⟩*0]

⇒ synchronization available

*· · · → a*2*.*0 *∥ b*1*.*0 *∥* 0 (in the paper synchronization is not a transition, but it could)

⇒ interleaving semantics

· · · $\xrightarrow{a_2}$ *b*₁ *o* 0 or *·* · *· <u><i>b*₁ *a*₂ ∂ 0</u>

Definition (**Execution**) A maximal path of transitions 2 paths: $P \stackrel{a_1}{\longrightarrow} \rightarrow \stackrel{a_2}{\longrightarrow} \stackrel{b_1}{\longrightarrow} 0$ and $P \stackrel{a_1}{\longrightarrow} \rightarrow \stackrel{b_1}{\longrightarrow} \stackrel{a_2}{\longrightarrow} 0$

Process behavior in a nutshell (cf. relatively "unpleasant" proof system in the paper) $P \stackrel{\text{defs}}{=} \nu(B)$ [$a_1 \cdot \langle B \rangle a_2 \cdot 0 \parallel \langle B \rangle b_1 \cdot 0 \parallel \langle B \rangle 0$]

⇒ synchronization on barrier *⟨B⟩* is *not* available because the leftmost process is not ready.

*· · · ^a*¹ *−→ ν*(*B*) [*⟨B⟩a*2*.*0 *∥ ⟨B⟩b*1*.*0 *∥ ⟨B⟩*0]

⇒ synchronization available

 $\cdots \rightarrow a_{2}$, $0 \parallel b_{1}$, $0 \parallel 0$ (in the paper synchronization is not a transition, but it could)

⇒ interleaving semantics

· · · $\xrightarrow{a_2}$ *b*₁ *o* 0 or *·* · *· <u><i>b*₁ *a*₂ ∂ 0</u>

Definition (**Execution**) A maximal path of transitions 2 paths: $P \stackrel{a_1}{\longrightarrow} \rightarrow \stackrel{a_2}{\longrightarrow} \stackrel{b_1}{\longrightarrow} 0$ and $P \stackrel{a_1}{\longrightarrow} \rightarrow \stackrel{b_1}{\longrightarrow} \stackrel{a_2}{\longrightarrow} 0$ *⇒* (semantic) size 2

Counting executions?

Why taking the number of (interleaved) executions as size?

Counting executions?

Why taking the number of (interleaved) executions as size?

▷ **Intuitively** it lets us observe/reason about *combinatorial explosion*.

Counting executions?

Why taking the number of (interleaved) executions as size?

▷ **Intuitively** it lets us observe/reason about *combinatorial explosion*.

▷ **More concretely** it is a very effective *enumerative combinatorics* tool by discriminating process terms in a very sharp way.

Why taking the number of (interleaved) executions as size?

▷ **Intuitively** it lets us observe/reason about *combinatorial explosion*.

▷ **More concretely** it is a very effective *enumerative combinatorics* tool by discriminating process terms in a very sharp way.

e.g. $\alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \alpha_4 \cdot \alpha_5$. That syntactic size 5 and semantic size 1

Why taking the number of (interleaved) executions as size?

▷ **Intuitively** it lets us observe/reason about *combinatorial explosion*.

▷ **More concretely** it is a very effective *enumerative combinatorics* tool by discriminating process terms in a very sharp way.

e.g. $\alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \alpha_4 \cdot \alpha_5$. That syntactic size 5 and semantic size 1 whereas $\alpha_1 \cdot \alpha_2 \cdot 0 \parallel \alpha_3 \cdot \alpha_4 \cdot 0$ has syntactic size 5 and semantic size 6

Question: is there any practical use of *this*?

Question: is there any practical use of *this*?

⇒ we would argue yes, and it is about the *statistical* analysis of (concurrent) systems.

Question: is there any practical use of *this*?

⇒ we would argue yes, and it is about the *statistical* analysis of (concurrent) systems.

- **•** generate executions uniformly at random
- "navigate" the state-space wrt. the uniform distribution of executions, e.g. exploring the "less probable" parts of the system under study (skewing the uniform distribution)
- property-based (generative) testing
- **•** statistical model-checking¹

¹cf. Monte Carlo model checking, R. Gosu and S. A. Smola, Tacas 2005.

Question: is it *difficult* to compute the semantic size of a process, i.e. to count its distinct executions ?

Question: is it *difficult* to compute the semantic size of a process, i.e. to count its distinct executions ? For some processes, it's "easy" ...

▷ e.g. tree-shaped processes² (scheduling problems):

for a tree
$$
T
$$
,
$$
\frac{|T|!}{\prod_{S \text{ a subtree of } T} |S|}
$$

(*⇒* Hook-length formula, known since at least Knuth's TAOC but we had to find it) *▷* also series-parallel processes³ (SP-posets): counting in *O*(*n*) *▷* also asynchronous structures⁴ (promises): counting in *O*(*n* 2)

²*A Quantitative Study of Parallel Processes*, EJC Vol.13/1 (2016).

³*Entropic Uniform Sampling of Linear Extensions in Series-Parallel Posets.* CSR 2017 ⁴*Beyond Series-Parallel Concurrent Systems: The Case of Arch Processes.* AofA 2018

In the paper, we show:

- A *non-deadlocked* process expressed in the very simple *barrier synchronization calculus* (shown previously) has a control graph shaped after an *intransitive directed acyclic graph* (DAG)
- The correspondance is complete: any (intransitive) DAG can be expressed as a process (we did not pickup the syntax arbitrarily)
- The one-to-one correspondance conveys to *partially ordered sets*, a.k.a. Posets (the *covering* of a poset is an intransitive DAG, a.k.a its transitive reduction seen as a digraph)

In the paper, we show:

- A *non-deadlocked* process expressed in the very simple *barrier synchronization calculus* (shown previously) has a control graph shaped after an *intransitive directed acyclic graph* (DAG)
- The correspondance is complete: any (intransitive) DAG can be expressed as a process (we did not pickup the syntax arbitrarily)
- The one-to-one correspondance conveys to *partially ordered sets*, a.k.a. Posets (the *covering* of a poset is an intransitive DAG, a.k.a its transitive reduction seen as a digraph)

Consequence: Process executions = Linear extensions (of arbitrary Posets)

Consequence²: Counting process executions = Counting linear extensions (of arbitrary Posets)

Consequence³: Counting process executions is \sharp -P complete (and that's not good) *⇒* cf. *Counting Linear Extensions* by G. Brightwell and P. Winkler. Order (1991)

In the paper, we show:

- A *non-deadlocked* process expressed in the very simple *barrier synchronization calculus* (shown previously) has a control graph shaped after an *intransitive directed acyclic graph* (DAG)
- The correspondance is complete: any (intransitive) DAG can be expressed as a process (we did not pickup the syntax arbitrarily)
- The one-to-one correspondance conveys to *partially ordered sets*, a.k.a. Posets (the *covering* of a poset is an intransitive DAG, a.k.a its transitive reduction seen as a digraph)

Consequence: Process executions = Linear extensions (of arbitrary Posets)

Consequence²: Counting process executions = Counting linear extensions (of arbitrary Posets)

Consequence³: Counting process executions is \sharp -P complete (and that's not good) *⇒* cf. *Counting Linear Extensions* by G. Brightwell and P. Winkler. Order (1991)

... However there is a uniform random sampler available (*Fast perfect sampling of linear extensions*. M. Huber. Discrete Mathematics (2006)). ⁷

Geometrical foundation: continuous embedding of a Poset

(This is classical combinatorics, but that does not make it easy to grasp...)

Idea⁵: Continuous embedding of a Poset into the unit hypercube.

⁵*Two poset polytopes*. R. P. Stanley. Discrete & computational geometry (1986).

Geometrical foundation: continuous embedding of a Poset

(This is classical combinatorics, but that does not make it easy to grasp...)

Idea⁵: Continuous embedding of a Poset into the unit hypercube. **Example**: embedding $\{x, y, z\}$ (size 3) into the hypercube (dimension 3)

Remark: there is no constraint here, it's the unordered partial order. ⁵*Two poset polytopes*. R. P. Stanley. Discrete & computational geometry (1986).

• Let's first "slice" the hypercube by an hyperplane splitting the (x, y) face

• Let's first "slice" the hypercube by an hyperplane splitting the (x, y) face

- **•** Let's first "slice" the hypercube by an hyperplane splitting the (x, y) face
- Then enforcing $x > y$ consists in taking the lower part of the slice

- **•** Let's first "slice" the hypercube by an hyperplane splitting the (x, y) face
- Then enforcing $x > y$ consists in taking the lower part of the slice

- **Example 1** Let's first "slice" the hypercube by an hyperplane splitting the (x, y) face
- Then enforcing $x > y$ consists in taking the lower part of the slice
- Conversely, enforcing $x < y$ consists in taking the upper part

- **Example 1** Let's first "slice" the hypercube by an hyperplane splitting the (x, y) face
- Then enforcing $x > y$ consists in taking the lower part of the slice
- Conversely, enforcing $x < y$ consists in taking the upper part

By successive slicing we can build a polytope *C^P* for an arbitrary poset *P*.

(note that the relative order of slices is arbitrary, this is just intersection)

From slices to linear extensions

By successive slicing we can build a polytope *C^P* for an arbitrary poset *P*. (note that the relative order of slices is arbitrary, this is just intersection)

... and if we would slice further we would ultimately obtain a linear extension (as a simplex)

From slices to linear extensions

By successive slicing we can build a polytope *C^P* for an arbitrary poset *P*. (note that the relative order of slices is arbitrary, this is just intersection)

... and if we would slice further we would ultimately obtain a linear extension (as a simplex)

⇒ the number of linear extensions is then *|ℓ|* = *n*! *·* Vol(*CP*) (with Vol "simply" a sum, i.e. an higher-dimensional integral)

Contribution 1: the BITS decomposition of DAGs/Posets/Barrier processes

Based on the hypercube embedding, this is "obvious" (S_n) (isn't it?):

Remark: Ψ is your "current" polytope, Ψ*′* is the next one.

Contribution 1: the BITS decomposition of DAGs/Posets/Barrier processes

Based on the hypercube embedding, this is "obvious" (S_n) (isn't it?):

Remark: Ψ is your "current" polytope, Ψ*′* is the next one.

⇒ details (and example) in the paper of course!

Contribution 1: the BITS decomposition of DAGs/Posets/Barrier processes

Based on the hypercube embedding, this is "obvious" (S_n) : it?):

Remark: Ψ is your "current" polytope, Ψ*′* is the next one.

⇒ details (and example) in the paper of course!

Fact: the obtained formula is linear without the (S)plit rule

⇒ What can we do without it? What does it mean to need it?

⇒ this process is BIT-decomposable, its has 1975974 distinct computations (Maxima computation)

 b_1 b_2 b_3

Based on the hypercube embedding, this is $\mu_{\text{ess but still}}$ "obvious" $\mu_{\text{isn't it?}}$:

Algorithm 1 Uniform sampling of a simplex of the order polytope

function $\text{SAMPLEPONT}(\mathcal{I} = \int_a^b f(y_i) \, \text{d}y_i)$ $C \leftarrow \text{eval}(\mathcal{I})$; $U \leftarrow \text{UNIFORM}(a, b)$ *Y*_{*i*} \leftarrow the solution *t* of $\int_{a}^{t} \frac{1}{C} f(y_i) dy_i = U$ **if** *f* is not a symbolic constant **then** $SAMPLEPONT(f{y_i \leftarrow Y_i})$ **else return** the *Yⁱ* 's

⇒ Complexity is linear in the number of integrals

⇒ details (and example) in the paper of course!

(Micro-) Benchmark

Alternative potential title: $217028 \times 2 \cdot 10^{292431}$ states and beyond !

(Micro-) Benchmark

Alternative potential title: $217028 \times 2 \cdot 10^{292431}$ states and beyond ! (joke!)

⇒ All the (unoptimized Python) code available at

https://gitlab.com/ParComb/combinatorics-barrier-synchro ¹⁵

The good parts

- The combinatorics tools are very sharp and characterize concurrency aspects in a very concrete way, the BIT-decomposition is IMHO a nice example of this.
- The geometrical interpretation (polytopes, etc.) is quite insightful, we only scratched the surface...
- The counting and random generation algorithms we propose apply directly on the control graphs or processes, there is no explicit construction of the state-space

The bad parts

- The curse of expressivity: combinatorics tools are *so* sharp that they simply cannot apply on too complex structures (but you know when you cross the line)
	- Non-determinism *and* synchronization? (ongoing work) *⇒* FSTCS'13: *The Combinatorics of non-determininism* (beautiful paper!)
	- Iteration? Recursion? (idea: unfolding of sizes, ...)

The bad parts

- The curse of expressivity: combinatorics tools are *so* sharp that they simply cannot apply on too complex structures (but you know when you cross the line)
	- Non-determinism *and* synchronization? (ongoing work) *⇒* FSTCS'13: *The Combinatorics of non-determininism* (beautiful paper!)
	- Iteration? Recursion? (idea: unfolding of sizes, ...)

⇒ someday we'll handle actual Petri Nets (at least some interesting subclasses), we'll tell you!

The bad parts

- The curse of expressivity: combinatorics tools are *so* sharp that they simply cannot apply on too complex structures (but you know when you cross the line)
	- Non-determinism *and* synchronization? (ongoing work) *⇒* FSTCS'13: *The Combinatorics of non-determininism* (beautiful paper!)
	- Iteration? Recursion? (idea: unfolding of sizes, ...)

⇒ someday we'll handle actual Petri Nets (at least some interesting subclasses), we'll tell you!

Thank you! Any question?