The Combinatorics of Barrier Synchronization^a

Petri Nets^b 2019 – June 23-28 – Aachen

Olivier Bodini⁽¹⁾, Matthieu Dien⁽²⁾, Antoine Genitrini⁽³⁾, Frédéric Peschanski⁽³⁾

(1) LIPN Institut Galilée - (2) Unicaen Greyc - (3) Sorbonne University - LIP6

^aResearch partially supported by the MetACOnc project ANR-15-CE40-0014. ^band other (less powerful) models of concurrency

We study **concurrent systems** from the point of view of **combinatorics** specifically:

Enumerative combinatorics

 \Rightarrow The science of counting "composable things"

Order theory

 \Rightarrow the science of *partially ordered sets* a.k.a. Posets

We study **concurrent systems** from the point of view of **combinatorics** specifically:

Enumerative combinatorics

 \Rightarrow The science of counting "composable things"

Order theory

 \Rightarrow the science of *partially ordered sets* a.k.a. Posets

Definition (Combinatorial class)

A set of objects associated to a notion of a (finite) **size**, and such that there is a *finite number* of objects of a given size.

We study **concurrent systems** from the point of view of **combinatorics** specifically:

- Enumerative combinatorics
 - \Rightarrow The science of counting "composable things"
- Order theory

 \Rightarrow the science of *partially ordered sets* a.k.a. Posets

Definition (Combinatorial class)

A set of objects associated to a notion of a (finite) **size**, and such that there is a *finite number* of objects of a given size.

 \Rightarrow but what is the size of a concurrent process ?

A very simple calculus of barrier synchronization.

Process		Size .	
<i>P</i> , <i>Q</i> ::=	0	0	(termination)
	$ \alpha.P$	1 + P	(atomic action and prefixing)
	$ \nu(B)P$	1 + P	(barrier and scope)
	$ \langle B \rangle P$	1 + P	(synchronization)
	P Q	1 + P + Q	(parallel)

A very simple calculus of barrier synchronization.

Process		Size .	
<i>P</i> , <i>Q</i> ::=	0	0	(termination)
	$ \alpha.P$	1 + P	(atomic action and prefixing)
	$ \nu(B)P$	1 + P	(barrier and scope)
	$ \langle B \rangle P$	1 + P	(synchronization)
	$ P \parallel Q$	1 + P + Q	(parallel)

Remark: \checkmark finite size , \checkmark finite number of objects of size *n*

0, α .**0**, $\langle B \rangle$ **0**, $\nu(B)$ **0**, α . β .**0**, ..., **0** || **0**, ..., α .**0** || **0**, ...

A very simple calculus of barrier synchronization.

Process		Size .	
<i>P</i> , <i>Q</i> ::=	0	0	(termination)
	$ \alpha.P$	1 + P	(atomic action and prefixing)
	$ \nu(B)P$	1 + P	(barrier and scope)
	$ \langle B \rangle P$	1 + P	(synchronization)
	$ P \parallel Q$	1 + P + Q	(parallel)

Remark: \checkmark finite size , \checkmark finite number of objects of size *n*

0, α .0, $\langle B \rangle$ 0, $\nu(B)$ 0, α . β .0, ..., 0 || 0, ..., α .0 || 0, ...

 \Rightarrow what about a **semantic** notion of a size?

Process behavior in a nutshell (cf. relatively "unpleasant" proof system in the paper)

 $P \stackrel{\text{\tiny defs}}{=} \nu(B) \ [a_1.\langle B \rangle a_2.0 \parallel \langle B \rangle b_1.0 \parallel \langle B \rangle 0]$

 \Rightarrow synchronization on barrier $\langle B \rangle$ is not available because the leftmost process is not ready.

Process behavior in a nutshell (cf. relatively "unpleasant" proof system in the paper) $P \stackrel{\text{defs}}{=} \nu(B) \ [a_1.\langle B \rangle a_2.0 \parallel \langle B \rangle b_1.0 \parallel \langle B \rangle 0]$

 \Rightarrow synchronization on barrier $\langle B \rangle$ is not available because the leftmost process is not ready.

 $\cdots \xrightarrow{a_1} \nu(B) \ [\langle B \rangle a_2.0 \parallel \langle B \rangle b_1.0 \parallel \langle B \rangle 0]$

 \Rightarrow synchronization available

Process behavior in a nutshell (cf. relatively "unpleasant" proof system in the paper) $P \stackrel{\text{defs}}{=} \nu(B) \ [a_1.\langle B \rangle a_2.0 \parallel \langle B \rangle b_1.0 \parallel \langle B \rangle 0]$

 \Rightarrow synchronization on barrier $\langle B \rangle$ is not available because the leftmost process is not ready.

 $\cdots \xrightarrow{a_1} \nu(B) \ [\langle B \rangle a_2.0 \parallel \langle B \rangle b_1.0 \parallel \langle B \rangle 0]$

 \Rightarrow synchronization available

 $\cdots
ightarrow a_2.0 \parallel b_1.0 \parallel 0$ (in the paper synchronization is not a transition, but it could)

 \Rightarrow interleaving semantics

Process behavior in a nutshell (cf. relatively "unpleasant" proof system in the paper) $P \stackrel{\text{defs}}{=} \nu(B) \ [a_1.\langle B \rangle a_2.0 \parallel \langle B \rangle b_1.0 \parallel \langle B \rangle 0]$

 \Rightarrow synchronization on barrier $\langle B \rangle$ is not available because the leftmost process is not ready.

 $\cdots \xrightarrow{a_1} \nu(B) \ [\langle B \rangle a_2.0 \parallel \langle B \rangle b_1.0 \parallel \langle B \rangle 0]$

 \Rightarrow synchronization available

 $\cdots
ightarrow a_2.0 \parallel b_1.0 \parallel 0$ (in the paper synchronization is not a transition, but it could)

 \Rightarrow interleaving semantics

 $\cdots \xrightarrow{a_2} \xrightarrow{b_1} \mathbf{0} \text{ or } \cdots \xrightarrow{b_1} \xrightarrow{a_2} \mathbf{0}$

Process behavior in a nutshell (cf. relatively "unpleasant" proof system in the paper) $P \stackrel{\text{defs}}{=} \nu(B) \ [a_1.\langle B \rangle a_2.0 \parallel \langle B \rangle b_1.0 \parallel \langle B \rangle 0]$

 \Rightarrow synchronization on barrier $\langle B \rangle$ is not available because the leftmost process is not ready.

 $\cdots \xrightarrow{a_1} \nu(B) \ [\langle B \rangle a_2.0 \parallel \langle B \rangle b_1.0 \parallel \langle B \rangle 0]$

 \Rightarrow synchronization available

 $\cdots
ightarrow a_2.0 \parallel b_1.0 \parallel 0$ (in the paper synchronization is not a transition, but it could)

 \Rightarrow interleaving semantics

 $\cdots \xrightarrow{a_2} \xrightarrow{b_1} \mathbf{0} \text{ or } \cdots \xrightarrow{b_1} \xrightarrow{a_2} \mathbf{0}$

Definition (Execution) A maximal path of transitions

2 paths: $P \xrightarrow{a_1} \rightarrow \xrightarrow{a_2} \xrightarrow{b_1} 0$ and $P \xrightarrow{a_1} \rightarrow \xrightarrow{b_1} \xrightarrow{a_2} 0$

Process behavior in a nutshell (cf. relatively "unpleasant" proof system in the paper) $P \stackrel{\text{defs}}{=} \nu(B) \ [a_1.\langle B \rangle a_2.0 \parallel \langle B \rangle b_1.0 \parallel \langle B \rangle 0]$

 \Rightarrow synchronization on barrier $\langle B \rangle$ is not available because the leftmost process is not ready.

 $\cdots \xrightarrow{a_1} \nu(B) \ [\langle B \rangle a_2.0 \parallel \langle B \rangle b_1.0 \parallel \langle B \rangle 0]$

 \Rightarrow synchronization available

 $\cdots
ightarrow a_2.0 \parallel b_1.0 \parallel 0$ (in the paper synchronization is not a transition, but it could)

 \Rightarrow interleaving semantics

 $\cdots \xrightarrow{a_2} \xrightarrow{b_1} \mathbf{0} \text{ or } \cdots \xrightarrow{b_1} \xrightarrow{a_2} \mathbf{0}$

Definition (Execution) A maximal path of transitions

2 paths: $P \xrightarrow{a_1} \rightarrow \xrightarrow{a_2} \xrightarrow{b_1} 0$ and $P \xrightarrow{a_1} \rightarrow \xrightarrow{b_1} \xrightarrow{a_2} 0$

 \Rightarrow (semantic) size 2

Counting executions?

Why taking the number of (interleaved) executions as size?

▷ **Intuitively** it lets us observe/reason about *combinatorial explosion*.

▷ **Intuitively** it lets us observe/reason about *combinatorial explosion*.

▷ **More concretely** it is a very effective *enumerative combinatorics* tool by discriminating process terms in a very sharp way.

▷ **Intuitively** it lets us observe/reason about *combinatorial explosion*.

▷ **More concretely** it is a very effective *enumerative combinatorics* tool by discriminating process terms in a very sharp way.

e.g. $\alpha_1.\alpha_2.\alpha_3.\alpha_4.\alpha_5.0$ has syntactic size 5 and semantic size 1

▷ **Intuitively** it lets us observe/reason about *combinatorial explosion*.

▷ **More concretely** it is a very effective *enumerative combinatorics* tool by discriminating process terms in a very sharp way.

e.g. $\alpha_1.\alpha_2.\alpha_3.\alpha_4.\alpha_5.0$ has syntactic size 5 and semantic size 1 whereas $\alpha_1.\alpha_2.0 \parallel \alpha_3.\alpha_4.0$ has syntactic size 5 and semantic size 6

1.
$$\frac{\alpha_{1}}{\alpha_{1}} \cdot \frac{\alpha_{2}}{\alpha_{3}} \cdot \frac{\alpha_{3}}{\alpha_{4}} \cdot \frac{\alpha_{4}}{\alpha_{4}}$$
2.
$$\frac{\alpha_{1}}{\alpha_{1}} \cdot \frac{\alpha_{3}}{\alpha_{3}} \cdot \frac{\alpha_{2}}{\alpha_{2}} \cdot \frac{\alpha_{4}}{\alpha_{4}}$$
3.
$$\frac{\alpha_{1}}{\alpha_{3}} \cdot \frac{\alpha_{3}}{\alpha_{1}} \cdot \frac{\alpha_{4}}{\alpha_{2}} \cdot \frac{\alpha_{2}}{\alpha_{4}}$$
4.
$$\frac{\alpha_{3}}{\alpha_{3}} \cdot \frac{\alpha_{1}}{\alpha_{1}} \cdot \frac{\alpha_{2}}{\alpha_{4}} \cdot \frac{\alpha_{2}}{\alpha_{2}}$$
5.
$$\frac{\alpha_{3}}{\alpha_{3}} \cdot \frac{\alpha_{4}}{\alpha_{1}} \cdot \frac{\alpha_{1}}{\alpha_{2}} \cdot \frac{\alpha_{2}}{\alpha_{2}}$$
6.
$$\frac{\alpha_{3}}{\alpha_{3}} \cdot \frac{\alpha_{4}}{\alpha_{4}} \cdot \frac{\alpha_{1}}{\alpha_{2}} \cdot \frac{\alpha_{2}}{\alpha_{2}}$$

Question: is there any practical use of this?

Question: is there any practical use of *this*?

 \Rightarrow we would argue yes, and it is about the *statistical* analysis of (concurrent) systems.

Question: is there any practical use of this?

 \Rightarrow we would argue yes, and it is about the statistical analysis of (concurrent) systems.

- generate executions uniformly at random
- "navigate" the state-space wrt. the uniform distribution of executions, e.g. exploring the "less probable" parts of the system under study (skewing the uniform distribution)
- property-based (generative) testing
- statistical model-checking¹

¹cf. *Monte Carlo model checking*, R. Gosu and S. A. Smola, Tacas 2005.

Question: is it *difficult* to compute the semantic size of a process, i.e. to count its distinct executions ?

Question: is it *difficult* to compute the semantic size of a process, i.e. to count its distinct executions ? For some processes, it's "easy" ...

▷ e.g. tree-shaped processes² (scheduling problems):

for a tree
$$T$$
, $\frac{|T|!}{\prod_{S \text{ a subtree of } T} |S|}$

(⇒ Hook-length formula, known since at least Knuth's TAOC but we had to find it) ▷ also series-parallel processes³ (SP-posets): counting in O(n)▷ also asynchronous structures⁴ (promises): counting in $O(n^2)$

²A Quantitative Study of Parallel Processes, EJC Vol.13/1 (2016).

³Entropic Uniform Sampling of Linear Extensions in Series-Parallel Posets. CSR 2017 ⁴Beyond Series-Parallel Concurrent Systems: The Case of Arch Processes. AofA 2018

In the paper, we show:

- A non-deadlocked process expressed in the very simple barrier synchronization calculus (shown previously) has a control graph shaped after an intransitive directed acyclic graph (DAG)
- The correspondance is complete: any (intransitive) DAG can be expressed as a process (we did not pickup the syntax arbitrarily)
- The one-to-one correspondance conveys to partially ordered sets, a.k.a. Posets (the covering of a poset is an intransitive DAG, a.k.a its transitive reduction seen as a digraph)

In the paper, we show:

- A non-deadlocked process expressed in the very simple barrier synchronization calculus (shown previously) has a control graph shaped after an intransitive directed acyclic graph (DAG)
- The correspondance is complete: any (intransitive) DAG can be expressed as a process (we did not pickup the syntax arbitrarily)
- The one-to-one correspondance conveys to partially ordered sets, a.k.a. Posets (the covering of a poset is an intransitive DAG, a.k.a its transitive reduction seen as a digraph)

Consequence: Process executions = Linear extensions (of arbitrary Posets)

Consequence²: Counting process executions = Counting linear extensions (of arbitrary Posets)

Consequence³: Counting process executions is ♯-P complete (and that's not good) ⇒ cf. *Counting Linear Extensions* by G. Brightwell and P. Winkler. Order (1991) In the paper, we show:

- A non-deadlocked process expressed in the very simple barrier synchronization calculus (shown previously) has a control graph shaped after an intransitive directed acyclic graph (DAG)
- The correspondance is complete: any (intransitive) DAG can be expressed as a process (we did not pickup the syntax arbitrarily)
- The one-to-one correspondance conveys to partially ordered sets, a.k.a. Posets (the covering of a poset is an intransitive DAG, a.k.a its transitive reduction seen as a digraph)

Consequence: Process executions = Linear extensions (of arbitrary Posets)

Consequence²: Counting process executions = Counting linear extensions (of arbitrary Posets)

Consequence³: Counting process executions is ♯-P complete (and that's not good) ⇒ cf. *Counting Linear Extensions* by G. Brightwell and P. Winkler. Order (1991)

... However there is a uniform random sampler available (*Fast perfect sampling of linear extensions*. M. Huber. Discrete Mathematics (2006)).

Geometrical foundation: continuous embedding of a Poset

(This is classical combinatorics, but that does not make it easy to grasp...)

Idea⁵: Continuous embedding of a Poset into the unit hypercube.

⁵*Two poset polytopes.* R. P. Stanley. Discrete & computational geometry (1986).

Geometrical foundation: continuous embedding of a Poset

(This is classical combinatorics, but that does not make it easy to grasp...)

Idea⁵: Continuous embedding of a Poset into the unit hypercube. **Example**: embedding $\{x, y, z\}$ (size 3) into the hypercube (dimension 3)

Remark: there is no constraint here, it's the unordered partial order. ⁵*Two poset polytopes.* R. P. Stanley. Discrete & computational geometry (1986).

Let's first "slice" the hypercube by an hyperplane splitting the (x, y) face

Let's first "slice" the hypercube by an hyperplane splitting the (x, y) face

- Let's first "slice" the hypercube by an hyperplane splitting the (x, y) face
- Then enforcing *x* > *y* consists in taking the lower part of the slice

- Let's first "slice" the hypercube by an hyperplane splitting the (x, y) face
- Then enforcing *x* > *y* consists in taking the lower part of the slice

- Let's first "slice" the hypercube by an hyperplane splitting the (x, y) face
- Then enforcing *x* > *y* consists in taking the lower part of the slice
- Conversely, enforcing x < y consists in taking the upper part

- Let's first "slice" the hypercube by an hyperplane splitting the (x, y) face
- Then enforcing *x* > *y* consists in taking the lower part of the slice
- Conversely, enforcing x < y consists in taking the upper part

By successive slicing we can build a polytope C_P for an arbitrary poset P.

(note that the relative order of slices is arbitrary, this is just intersection)

From slices to linear extensions

By successive slicing we can build a polytope C_P for an arbitrary poset P. (note that the relative order of slices is arbitrary, this is just intersection)

 \ldots and if we would slice further we would ultimately obtain a linear extension (as a simplex)

From slices to linear extensions

By successive slicing we can build a polytope C_P for an arbitrary poset P. (note that the relative order of slices is arbitrary, this is just intersection)

 \dots and if we would slice further we would ultimately obtain a linear extension (as a simplex)

 \Rightarrow the number of linear extensions is then $|\ell| = n! \cdot \text{Vol}(C_P)$ (with Vol "simply" a sum, i.e. an higher-dimensional integral)

Contribution 1: the BITS decomposition of DAGs/Posets/Barrier processes

Based on the hypercube embedding, this is "obvious" (isn't it?):

Remark: Ψ is your "current" polytope, Ψ' is the next one.

Contribution 1: the BITS decomposition of DAGs/Posets/Barrier processes

Based on the hypercube embedding, this is "obvious" (isn't it?):

Remark: Ψ is your "current" polytope, Ψ' is the next one.

 \Rightarrow details (and example) in the paper of course!

Contribution 1: the BITS decomposition of DAGs/Posets/Barrier processes

Based on the hypercube embedding, this is "obvious" (isn't it?):

Remark: Ψ is your "current" polytope, Ψ' is the next one.

 \Rightarrow details (and example) in the paper of course!

Fact: the obtained formula is linear without the (S)plit rule

 \Rightarrow What can we do without it? What does it mean to need it?

 \Rightarrow this process is BIT-decomposable, its has 1975974 distinct computations $_{(Maxima\ computation)}$

 b_1

 b_2

b₃

Based on the hypercube embedding, this is (less but still) "obvious" (isn't it?):

Algorithm 1 Uniform sampling of a simplex of the order polytope

function SAMPLEPOINT($\mathcal{I} = \int_{a}^{b} f(y_i) dy_i$) $C \leftarrow \text{eval}(\mathcal{I})$; $U \leftarrow \text{UNIFORM}(a, b)$ $Y_i \leftarrow \text{the solution } t \text{ of } \int_{a}^{t} \frac{1}{c} f(y_i) dy_i = U$ **if** f is not a symbolic constant **then** SAMPLEPOINT($f\{y_i \leftarrow Y_i\}$) **else return** the Y_i 's

 \Rightarrow Complexity is linear in the number of integrals

 \Rightarrow details (and example) in the paper of course!

(Micro-) Benchmark

 10^{130}

200:66

Alternative potential title: $217028 \times 2 \cdot 10^{292431}$ states and beyond ! $_{(\text{jokel})}$

FJ size	$\sharp \mathcal{LE}$	FJ gen	(count)	BIT gen	(count)	CFTP gen
10	19	$1.10^{-5} { m s}$	$(2.10^{-4} s)$	$6.10^{-4} s$	(0.03 s)	0.04 s
30	10 ⁹	$2.10^{-5} s$	$0(2.10^{-4} s)$	0.02 s	(0.03 s)	1.8 s
40	$6\cdot 10^6$	4.10^{-5} s	$(3.10^{-4} s)$	3.5 s	(5.2 s)	5.6 s
63	$4\cdot 10^{29}$	5.10^{-4} s	(0.03 s)	Mem. crash	(Crash)	55 s
217028	$2 \cdot 10^{292431}$	8.11 s	(3.34 s)	Mem. crash	(Crash)	Timeout
Arch size	e #LE	Arch gen	(count)	BIT gen	(count	:) CFTP gen
10:2	43	2.10^{-5} s	$(4.10^{-5} s)$	0.002 s	6.10^{-6} s	s) 0.04 s
30:2	$9.8\cdot10^8$	0.003 s	(0.0009 s)	7.10^{-6} s	(0.0004 s	s) 1.5 s
30:4	$6.9\cdot10^{10}$	0.001 s	(0.005 s)	7.10^{-5} s	(0.004 s	s) 2.5 s
100:2	$1.3 \cdot 10^{32}$	0.75 s	(0.16 s)	Mem. crash	(Crash	n) ⁶ 5.6 s
	1.0 10		()		· ·	

(31 s)

54 s

Mem. crash

(Crash)

Timeout

(Micro-) Benchmark

Alternative potential title: $217028 \times 2 \cdot 10^{292431}$ states and beyond ! $_{(\text{jokel})}$

FJ size	$\sharp \mathcal{LE}$	FJ gen	(count)	BIT gen	(count)	CFTP gen
10	19	$1.10^{-5} { m s}$	$(2.10^{-4} s)$	$6.10^{-4} s$	(0.03 s)	0.04 s
30	10 ⁹	$2.10^{-5} s$	$0(2.10^{-4} s)$	0.02 s	(0.03 s)	1.8 s
40	$6\cdot 10^6$	4.10^{-5} s	$(3.10^{-4} s)$	3.5 s	(5.2 s)	5.6 s
63	$4 \cdot 10^{29}$	$5.10^{-4} m s$	(0.03 s)	Mem. crash	(Crash)	55 s
217028	$2 \cdot 10^{292431}$	8.11 s	(3.34 s)	Mem. crash	(Crash)	Timeout
Arch size	e #LE	Arch gen	(count)	BIT gen	(coun	t) CFTP gen
Arch size	e <i>♯LE</i> 43	Arch gen 2.10 ⁻⁵ s	(count) (4.10 ⁻⁵ s)	BIT gen 0.002 s	(coun 6.10 ⁻⁶	t) CFTP gen s) 0.04 s
Arch size 10:2 30:2	$\begin{array}{c} \underline{2} \\ $	Arch gen 2.10 ⁻⁵ s 0.003 s	(count) (4.10 ⁻⁵ s) (0.0009 s)	BIT gen 0.002 s 7.10 ⁻⁶ s	(coun 6.10 ⁻⁶ (0.0004	t) CFTP gen s) 0.04 s s) 1.5 s
Arch size 10:2 30:2 30:4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ARCH gen 2.10 ⁻⁵ s 0.003 s 0.001 s	$(4.10^{-5} s) \\ (0.0009 s) \\ (0.005 s)$	BIT gen 0.002 s 7.10 ⁻⁶ s 7.10 ⁻⁵ s	(count 6.10 ⁻⁶ (0.0004 (0.004	cftp gen s) 0.04 s s) 1.5 s s) 2.5 s
Arch size 10:2 30:2 30:4 100:2	$\begin{array}{c c} & & & \\ & & \\ & & 43 \\ & & 9.8 \cdot 10^8 \\ & 6.9 \cdot 10^{10} \\ & & 1.3 \cdot 10^{32} \end{array}$	Arch gen 2.10 ⁻⁵ s 0.003 s 0.001 s 0.75 s	$\begin{array}{c} \text{(count)} \\ (4.10^{-5} \text{ s}) \\ (0.0009 \text{ s}) \\ (0.005 \text{ s}) \\ (0.16 \text{ s}) \end{array}$	BIT gen 0.002 s 7.10 ⁻⁶ s 7.10 ⁻⁵ s Mem. crash	(count 6.10 ⁻⁶ (0.0004 (0.004 (Crash	cftp cftp gen s) 0.04 s s s) 1.5 s s s) 2.5 s s n) 6 5.6 s s
Arch size 10:2 30:2 30:4 100:2 100:32	$\begin{array}{c c} & & & \\ & & &$	ARCH gen 2.10 ⁻⁵ s 0.003 s 0.001 s 0.75 s 2.7 s	$\begin{array}{c} \text{(count)} \\ (4.10^{-5} \text{ s}) \\ (0.0009 \text{ s}) \\ (0.005 \text{ s}) \\ (0.16 \text{ s}) \\ (0.17 \text{ s}) \end{array}$	BIT gen 0.002 s 7.10 ⁻⁶ s 7.10 ⁻⁵ s Mem. crash Mem. crash	(coun 6.10 ⁻⁶ (0.0004 (0.004 (Crash (Crash	CFTP gen s) 0.04 s s) 1.5 s s) 2.5 s n) 6 5.6 s n) 6 5.9 s

 \Rightarrow All the (unoptimized Python) code available at https://gitlab.com/ParComb/combinatorics-barrier-synchro ¹⁵

The good parts

- The combinatorics tools are very sharp and characterize concurrency aspects in a very concrete way, the BIT-decomposition is IMHO a nice example of this.
- The geometrical interpretation (polytopes, etc.) is quite insightful, we only scratched the surface...
- The counting and random generation algorithms we propose apply directly on the control graphs or processes, there is no explicit construction of the state-space

The bad parts

- The curse of expressivity: combinatorics tools are so sharp that they simply cannot apply on too complex structures (but you know when you cross the line)
 - Non-determinism and synchronization? (ongoing work)
 ⇒ FSTCS'13: The Combinatorics of non-determininism (beautiful paper!)
 - Iteration? Recursion? (idea: unfolding of sizes, ...)

The bad parts

- The curse of expressivity: combinatorics tools are so sharp that they simply cannot apply on too complex structures (but you know when you cross the line)
 - Non-determinism and synchronization? (ongoing work)
 ⇒ FSTCS'13: The Combinatorics of non-determininism (beautiful paper!)
 - Iteration? Recursion? (idea: unfolding of sizes, ...)

 \Rightarrow someday we'll handle actual Petri Nets (at least some interesting subclasses), we'll tell you!

The bad parts

- The curse of expressivity: combinatorics tools are so sharp that they simply cannot apply on too complex structures (but you know when you cross the line)
 - Non-determinism and synchronization? (ongoing work)
 ⇒ FSTCS'13: The Combinatorics of non-determininism (beautiful paper!)
 - Iteration? Recursion? (idea: unfolding of sizes, ...)

 \Rightarrow someday we'll handle actual Petri Nets (at least some interesting subclasses), we'll tell you!

Thank you! Any question?