
The Combinatorics of Barrier Synchronizationa

Petri Netsb 2019 – June 23-28 – Aachen

Olivier Bodini(1), Matthieu Dien(2), Antoine Genitrini(3), Frédéric Peschanski(3)

(1) LIPN Institut Galilée – (2) Unicaen Greyc – (3) Sorbonne University – LIP6

aResearch partially supported by the MetACOnc project ANR-15-CE40-0014.
band other (less powerful) models of concurrency



Object of study

We study concurrent systems from the point of view of combinatorics
specifically:

• Enumerative combinatorics
⇒ The science of counting “composable things”

• Order theory
⇒ the science of partially ordered sets a.k.a. Posets

Definition (Combinatorial class)
A set of objects associated to a notion of a (finite) size, and such that
there is a finite number of objects of a given size.

⇒ but what is the size of a concurrent process ?
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A simple class: barrier synchronization processes

A very simple calculus of barrier synchronization.
Process Size |.|
P,Q ::= 0 0 (termination)

| α.P 1 + |P| (atomic action and prefixing)
| ν(B)P 1 + |P| (barrier and scope)
| ⟨B⟩P 1 + |P| (synchronization)
| P ∥ Q 1 + |P|+ |Q| (parallel)

Remark: ✓finite size , ✓finite number of objects of size n

0, α.0, ⟨B⟩ 0, ν(B) 0, α.β.0, . . . , 0 ∥ 0, . . . , α.0 ∥ 0, . . .

⇒ what about a semantic notion of a size?
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Semantics

Process behavior in a nutshell (cf. relatively “unpleasant” proof system in the paper)

P defs
= ν(B) [a1.⟨B⟩a2.0 ∥ ⟨B⟩b1.0 ∥ ⟨B⟩0]

⇒ synchronization on barrier ⟨B⟩ is not available because the leftmost
process is not ready.

· · · a1−→ ν(B) [⟨B⟩a2.0 ∥ ⟨B⟩b1.0 ∥ ⟨B⟩0]

⇒ synchronization available

· · · → a2.0 ∥ b1.0 ∥ 0 (in the paper synchronization is not a transition, but it could)

⇒ interleaving semantics

· · · a2−→ b1−→ 0 or · · · b1−→ a2−→ 0

Definition (Execution) A maximal path of transitions

2 paths: P a1−→→ a2−→ b1−→ 0 and P a1−→→ b1−→ a2−→ 0

⇒ (semantic) size 2

3



Semantics

Process behavior in a nutshell (cf. relatively “unpleasant” proof system in the paper)

P defs
= ν(B) [a1.⟨B⟩a2.0 ∥ ⟨B⟩b1.0 ∥ ⟨B⟩0]

⇒ synchronization on barrier ⟨B⟩ is not available because the leftmost
process is not ready.

· · · a1−→ ν(B) [⟨B⟩a2.0 ∥ ⟨B⟩b1.0 ∥ ⟨B⟩0]

⇒ synchronization available

· · · → a2.0 ∥ b1.0 ∥ 0 (in the paper synchronization is not a transition, but it could)

⇒ interleaving semantics

· · · a2−→ b1−→ 0 or · · · b1−→ a2−→ 0

Definition (Execution) A maximal path of transitions

2 paths: P a1−→→ a2−→ b1−→ 0 and P a1−→→ b1−→ a2−→ 0

⇒ (semantic) size 2

3



Semantics

Process behavior in a nutshell (cf. relatively “unpleasant” proof system in the paper)

P defs
= ν(B) [a1.⟨B⟩a2.0 ∥ ⟨B⟩b1.0 ∥ ⟨B⟩0]

⇒ synchronization on barrier ⟨B⟩ is not available because the leftmost
process is not ready.

· · · a1−→ ν(B) [⟨B⟩a2.0 ∥ ⟨B⟩b1.0 ∥ ⟨B⟩0]

⇒ synchronization available

· · · → a2.0 ∥ b1.0 ∥ 0 (in the paper synchronization is not a transition, but it could)

⇒ interleaving semantics

· · · a2−→ b1−→ 0 or · · · b1−→ a2−→ 0

Definition (Execution) A maximal path of transitions

2 paths: P a1−→→ a2−→ b1−→ 0 and P a1−→→ b1−→ a2−→ 0

⇒ (semantic) size 2

3



Semantics

Process behavior in a nutshell (cf. relatively “unpleasant” proof system in the paper)

P defs
= ν(B) [a1.⟨B⟩a2.0 ∥ ⟨B⟩b1.0 ∥ ⟨B⟩0]

⇒ synchronization on barrier ⟨B⟩ is not available because the leftmost
process is not ready.

· · · a1−→ ν(B) [⟨B⟩a2.0 ∥ ⟨B⟩b1.0 ∥ ⟨B⟩0]

⇒ synchronization available

· · · → a2.0 ∥ b1.0 ∥ 0 (in the paper synchronization is not a transition, but it could)

⇒ interleaving semantics

· · · a2−→ b1−→ 0 or · · · b1−→ a2−→ 0

Definition (Execution) A maximal path of transitions

2 paths: P a1−→→ a2−→ b1−→ 0 and P a1−→→ b1−→ a2−→ 0

⇒ (semantic) size 2

3



Semantics

Process behavior in a nutshell (cf. relatively “unpleasant” proof system in the paper)

P defs
= ν(B) [a1.⟨B⟩a2.0 ∥ ⟨B⟩b1.0 ∥ ⟨B⟩0]

⇒ synchronization on barrier ⟨B⟩ is not available because the leftmost
process is not ready.

· · · a1−→ ν(B) [⟨B⟩a2.0 ∥ ⟨B⟩b1.0 ∥ ⟨B⟩0]

⇒ synchronization available

· · · → a2.0 ∥ b1.0 ∥ 0 (in the paper synchronization is not a transition, but it could)

⇒ interleaving semantics

· · · a2−→ b1−→ 0 or · · · b1−→ a2−→ 0

Definition (Execution) A maximal path of transitions

2 paths: P a1−→→ a2−→ b1−→ 0 and P a1−→→ b1−→ a2−→ 0

⇒ (semantic) size 2

3



Semantics

Process behavior in a nutshell (cf. relatively “unpleasant” proof system in the paper)

P defs
= ν(B) [a1.⟨B⟩a2.0 ∥ ⟨B⟩b1.0 ∥ ⟨B⟩0]

⇒ synchronization on barrier ⟨B⟩ is not available because the leftmost
process is not ready.

· · · a1−→ ν(B) [⟨B⟩a2.0 ∥ ⟨B⟩b1.0 ∥ ⟨B⟩0]

⇒ synchronization available

· · · → a2.0 ∥ b1.0 ∥ 0 (in the paper synchronization is not a transition, but it could)

⇒ interleaving semantics

· · · a2−→ b1−→ 0 or · · · b1−→ a2−→ 0

Definition (Execution) A maximal path of transitions

2 paths: P a1−→→ a2−→ b1−→ 0 and P a1−→→ b1−→ a2−→ 0

⇒ (semantic) size 2
3



Counting executions?

Why taking the number of (interleaved) executions as size?

▷ Intuitively it lets us observe/reason about combinatorial explosion.

▷ More concretely it is a very effective enumerative combinatorics tool
by discriminating process terms in a very sharp way.

e.g. α1.α2.α3.α4.α5.0 has syntactic size 5 and semantic size 1

whereas α1.α2.0 ∥ α3.α4.0 has syntactic size 5 and semantic size 6

1. α1−→ · α2−→ · α3−→ · α4−→
2. α1−→ · α3−→ · α2−→ · α4−→
3. α1−→ · α3−→ · α4−→ · α2−→
4. α3−→ · α1−→ · α2−→ · α4−→
5. α3−→ · α1−→ · α4−→ · α2−→
6. α3−→ · α4−→ · α1−→ · α2−→
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Practical applications?

Question: is there any practical use of this?

⇒ we would argue yes, and it is about the statistical analysis of
(concurrent) systems.

• generate executions uniformly at random
• “navigate” the state-space wrt. the uniform distribution of

executions, e.g. exploring the “less probable” parts of the system
under study (skewing the uniform distribution)

• property-based (generative) testing
• statistical model-checking
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1cf. Monte Carlo model checking, R. Gosu and S. A. Smola, Tacas 2005.
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Computing the semantic size?

Question: is it difficult to compute the semantic size of a process, i.e. to
count its distinct executions ?

For some processes, it’s “easy” ...

▷ e.g. tree-shaped processes2 (scheduling problems):

for a tree T, |T|!∏
S a subtree of T |S|

(⇒ Hook-length formula, known since at least Knuth’s TAOC but we had to find it)

▷ also series-parallel processes3 (SP-posets): counting in O(n)

▷ also asynchronous structures4 (promises): counting in O(n2)

2A Quantitative Study of Parallel Processes, EJC Vol.13/1 (2016).
3Entropic Uniform Sampling of Linear Extensions in Series-Parallel Posets. CSR 2017
4Beyond Series-Parallel Concurrent Systems: The Case of Arch Processes. AofA 2018
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Counting in general is hard

In the paper, we show:

• A non-deadlocked process expressed in the very simple barrier
synchronization calculus (shown previously) has a control graph shaped after
an intransitive directed acyclic graph (DAG)

• The correspondance is complete: any (intransitive) DAG can be
expressed as a process (we did not pickup the syntax arbitrarily)

• The one-to-one correspondance conveys to partially ordered sets,
a.k.a. Posets (the covering of a poset is an intransitive DAG, a.k.a its transitive reduction seen as a digraph)

Consequence: Process executions = Linear extensions (of arbitrary Posets)

Consequence2: Counting process executions = Counting linear
extensions (of arbitrary Posets)

Consequence3: Counting process executions is ♯-P complete (and that’s not good)

⇒ cf. Counting Linear Extensions by G. Brightwell and P. Winkler. Order (1991)

... However there is a uniform random sampler available
(Fast perfect sampling of linear extensions. M. Huber. Discrete Mathematics (2006)).
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Geometrical foundation: continuous embedding of a Poset
(This is classical combinatorics, but that does not make it easy to grasp...)

Idea5: Continuous embedding of a Poset into the unit hypercube.

Example: embedding {x, y, z} (size 3) into the hypercube (dimension 3)

x

y

z

Remark: there is no constraint here, it’s the unordered partial order.

5Two poset polytopes. R. P. Stanley. Discrete & computational geometry (1986).
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Ordering constraint = slicing the hypercube

x

y

z

• Let’s first “slice” the hypercube by an hyperplane splitting the (x, y)
face

• Then enforcing x > y consists in taking the lower part of the slice
• Conversely, enforcing x < y consists in taking the upper part
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From slices to linear extensions

By successive slicing we can build a polytope CP for an arbitrary poset P.
(note that the relative order of slices is arbitrary, this is just intersection)

... and if we would slice further we would ultimately obtain a linear
extension (as a simplex)

⇒ the number of linear extensions is then |ℓ| = n! · Vol(CP)

(with Vol “simply” a sum, i.e. an higher-dimensional integral)
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Contribution 1: the BITS decomposition of DAGs/Posets/Barrier processes

Based on the hypercube embedding, this is “obvious” (isn’t it?):

(B)ottom (I)ntermediate (T)op (S)plit

x

y
x

x

y

z

x

z

y

z
z

x y

x y

x y

Ψ′ =
∫ 1

x Ψ.dy Ψ′ =
∫ z

x Ψ.dy Ψ′ =
∫ z

0 Ψ.dy Ψ′ = Ψx≺y +Ψy≺x

Remark: Ψ is your “current” polytope, Ψ′ is the next one.

⇒ details (and example) in the paper of course!

Fact: the obtained formula is linear without the (S)plit rule

⇒ What can we do without it? What does it mean to need it?

11
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An example of a BIT-decomposable process

Sys=init.ν(G1,G2,J1).

step1.

ν(IO)


step2.⟨G1⟩step3.

⟨IO⟩step4.⟨G2⟩⟨J1⟩end

∥load.xform.⟨IO⟩0


∥gen.yield1.(⟨G1⟩0∥yield2.⟨G2⟩0)

∥fork.ν(J2)


comp1.⟨J2⟩0

∥comp2.1.comp2.2.⟨J2⟩0

∥⟨J2⟩join⟨J1⟩0)




init step1

gen

step2 step3 step4 end

yield1 yield2

load xform

fork comp1

comp2.1 comp2.2

join

⇒ this process is BIT-decomposable, its has 1975974 distinct
computations (Maxima computation)
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BIT-free processes ?
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Contribution 2: A generic uniform random sampler

Based on the hypercube embedding, this is (less but still) “obvious” (isn’t it?):

Algorithm 1 Uniform sampling of a simplex of the order polytope

function SamplePoint(I =
∫ b

a f(yi)dyi)
C← eval(I) ; U← Uniform(a, b)
Yi ← the solution t of

∫ t
a

1
C f(yi)dyi = U

if f is not a symbolic constant then
SamplePoint(f{yi ← Yi})

else return the Yi’s

⇒ Complexity is linear in the number of integrals

⇒ details (and example) in the paper of course!
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(Micro-) Benchmark

Alternative potential title: 217028× 2 · 10292431 states and beyond !
(joke!)

FJ size ♯LE FJ gen (count) bit gen (count) cftp gen
10 19 1.10−5 s (2.10−4 s) 6.10−4 s (0.03 s) 0.04 s
30 109 2.10−5 s 0(2.10−4 s) 0.02 s (0.03 s) 1.8 s
40 6 · 106 4.10−5 s (3.10−4 s) 3.5 s (5.2 s) 5.6 s
63 4 · 1029 5.10−4 s (0.03 s) Mem. crash (Crash) 55 s

217028 2 · 10292431 8.11 s (3.34 s) Mem. crash (Crash) Timeout

Arch size ♯LE Arch gen (count) bit gen (count) cftp gen
10:2 43 2.10−5 s (4.10−5 s) 0.002 s 6.10−6 s) 0.04 s
30:2 9.8 · 108 0.003 s (0.0009 s) 7.10−6 s (0.0004 s) 1.5 s
30:4 6.9 · 1010 0.001 s (0.005 s) 7.10−5 s (0.004 s) 2.5 s
100:2 1.3 · 1032 0.75 s (0.16 s) Mem. crash (Crash) 6 5.6 s
100:32 1 · 1053 2.7 s (0.17 s) Mem. crash (Crash) 6 5.9 s
200:66 10130 54 s (31 s) Mem. crash (Crash) Timeout

⇒ All the (unoptimized Python) code available at
https://gitlab.com/ParComb/combinatorics-barrier-synchro

15

https://gitlab.com/ParComb/combinatorics-barrier-synchro


(Micro-) Benchmark

Alternative potential title: 217028× 2 · 10292431 states and beyond !
(joke!)

FJ size ♯LE FJ gen (count) bit gen (count) cftp gen
10 19 1.10−5 s (2.10−4 s) 6.10−4 s (0.03 s) 0.04 s
30 109 2.10−5 s 0(2.10−4 s) 0.02 s (0.03 s) 1.8 s
40 6 · 106 4.10−5 s (3.10−4 s) 3.5 s (5.2 s) 5.6 s
63 4 · 1029 5.10−4 s (0.03 s) Mem. crash (Crash) 55 s

217028 2 · 10292431 8.11 s (3.34 s) Mem. crash (Crash) Timeout

Arch size ♯LE Arch gen (count) bit gen (count) cftp gen
10:2 43 2.10−5 s (4.10−5 s) 0.002 s 6.10−6 s) 0.04 s
30:2 9.8 · 108 0.003 s (0.0009 s) 7.10−6 s (0.0004 s) 1.5 s
30:4 6.9 · 1010 0.001 s (0.005 s) 7.10−5 s (0.004 s) 2.5 s
100:2 1.3 · 1032 0.75 s (0.16 s) Mem. crash (Crash) 6 5.6 s
100:32 1 · 1053 2.7 s (0.17 s) Mem. crash (Crash) 6 5.9 s
200:66 10130 54 s (31 s) Mem. crash (Crash) Timeout

⇒ All the (unoptimized Python) code available at
https://gitlab.com/ParComb/combinatorics-barrier-synchro 15

https://gitlab.com/ParComb/combinatorics-barrier-synchro


Conclusion (1)

The good parts

• The combinatorics tools are very sharp and characterize concurrency
aspects in a very concrete way, the BIT-decomposition is IMHO a
nice example of this.

• The geometrical interpretation (polytopes, etc.) is quite insightful,
we only scratched the surface...

• The counting and random generation algorithms we propose apply
directly on the control graphs or processes, there is no explicit
construction of the state-space
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Conclusion (2)

The bad parts

• The curse of expressivity: combinatorics tools are so sharp that they
simply cannot apply on too complex structures
(but you know when you cross the line)

• Non-determinism and synchronization? (ongoing work)
⇒ FSTCS’13: The Combinatorics of non-determininism (beautiful paper!)

• Iteration? Recursion? (idea: unfolding of sizes, ...)

⇒ someday we’ll handle actual Petri Nets (at least some interesting
subclasses), we’ll tell you!

Thank you! Any question?
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