Saturation Enhanced with Conditional Locality: Application to Petri Nets

Vince Molnár^{1,2}, István Majzik¹

{molnarv,majzik}@mit.bme.hu

¹Budapest University of Technology and Economics | Department of Measurement and Information Systems | Fault Tolerant Systems Research Group ²Hungarian Academy of Sciences | MTA-BME Lendület Research Group on Cyber-Physical Systems

- Model checking
 - State space exploration
 - Property analysis
- Symbolic model checking
 - Characteristic function
 - Decision diagrams
 - Saturation algorithm
- In this paper...
 - Conditional locality
 - General representations
 - Enhanced saturation effect

- Model checking
 - State space exploration
 - Property analysis
- Symbolic model checking
 - Characteristic function
 - Decision diagrams
 - Saturation algorithm
- In this paper...
 - Conditional locality
 - General representations
 - Enhanced saturation effect

- Model checking
 - State space exploration
 - Property analysis
- Symbolic model checking
 - Characteristic function
 - Decision diagrams
 - Saturation algorithm
- In this paper...
 - Conditional locality
 - General representations
 - Enhanced saturation effect

- Model checking
 - State space exploration
 - Property analysis
- Symbolic model checking
 - Characteristic function
 - Decision diagrams
 - Saturation algorithm
- In this paper...
 - Conditional locality
 - General representations
 - Enhanced saturation effect

- Model checking
 - State space exploration
 - Property analysis
- Symbolic model checking
 - Characteristic function
 - Decision diagrams
 - Saturation algorithm
- In this paper...
 - Conditional locality
 - General representations
 - Enhanced saturation effect

- Model checking
 - State space exploration
 - Property analysis
- Symbolic model checking
 - Characteristic function
 - Decision diagrams
 - Saturation algorithm
- In this paper...
 - Conditional locality
 - General representations
 - Enhanced saturation effect

- Low-level formalism that preserves structure of high-level model
- A partitioned transition system (PTS) is a tuple $(V, D, S^0, \mathcal{E}, \mathcal{N})$ s.t.:
 - V is the set of variables
 - *D* is the **domain** function $(D(x_k) \subseteq \mathbb{N} \text{ for all } x_k \in V)$
 - $S^0 \subseteq \hat{S}$ is the set of **initial states** (\hat{S} is the potential state space)
 - E is the set of high-level events
 - $\mathcal{N} \subseteq \hat{S} \times \hat{S}$ is the **next-state relation** (function), partitioned by \mathcal{E} such that $\mathcal{N} = \bigcup_{\alpha \in \mathcal{E}} \mathcal{N}_{\alpha}$
- In Petri nets:

- Low-level formalism that preserves structure of high-level model
- A partitioned transition system (PTS) is a tuple $(V, D, S^0, \mathcal{E}, \mathcal{N})$ s.t.:
 - V is the set of variables
 - *D* is the **domain** function $(D(x_k) \subseteq \mathbb{N} \text{ for all } x_k \in V)$
 - $S^0 \subseteq \hat{S}$ is the set of **initial states** (\hat{S} is the potential state space)
 - E is the set of high-level events
 - $\mathcal{N} \subseteq \hat{S} \times \hat{S}$ is the **next-state relation** (function), partitioned by \mathcal{E} such that $\mathcal{N} = \bigcup_{\alpha \in \mathcal{E}} \mathcal{N}_{\alpha}$
- In Petri nets:
 - Variables are places (domain is N)

- Low-level formalism that preserves structure of high-level model
- A partitioned transition system (PTS) is a tuple $(V, D, S^0, \mathcal{E}, \mathcal{N})$ s.t.:
 - V is the set of variables
 - *D* is the **domain** function $(D(x_k) \subseteq \mathbb{N}$ for all $x_k \in V$)
 - $S^0 \subseteq \hat{S}$ is the set of **initial states** (\hat{S} is the potential state space)
 - E is the set of high-level events
 - $\mathcal{N} \subseteq \hat{S} \times \hat{S}$ is the **next-state relation** (function), partitioned by \mathcal{E} such that $\mathcal{N} = \bigcup_{\alpha \in \mathcal{E}} \mathcal{N}_{\alpha}$
- In Petri nets:
 - Variables are places (domain is N)
 - Initial state is initial marking

- Low-level formalism that preserves structure of high-level model
- A partitioned transition system (PTS) is a tuple $(V, D, S^0, \mathcal{E}, \mathcal{N})$ s.t.:
 - V is the set of variables
 - *D* is the **domain** function $(D(x_k) \subseteq \mathbb{N} \text{ for all } x_k \in V)$
 - $S^0 \subseteq \hat{S}$ is the set of **initial states** (\hat{S} is the potential state space)
 - E is the set of high-level events
 - $\mathcal{N} \subseteq \hat{S} \times \hat{S}$ is the **next-state relation** (function), partitioned by \mathcal{E} such that $\mathcal{N} = \bigcup_{\alpha \in \mathcal{E}} \mathcal{N}_{\alpha}$
- In Petri nets:
 - Variables are places (domain is N)
 - Initial state is initial marking
 - Events are transitions

- Low-level formalism that preserves structure of high-level model
- A partitioned transition system (PTS) is a tuple $(V, D, S^0, \mathcal{E}, \mathcal{N})$ s.t.:
 - V is the set of variables
 - *D* is the **domain** function $(D(x_k) \subseteq \mathbb{N} \text{ for all } x_k \in V)$
 - $S^0 \subseteq \hat{S}$ is the set of **initial states** (\hat{S} is the potential state space)
 - E is the set of high-level events
 - $\mathcal{N} \subseteq \hat{S} \times \hat{S}$ is the **next-state relation** (function), partitioned by \mathcal{E} such that $\mathcal{N} = \bigcup_{\alpha \in \mathcal{E}} \mathcal{N}_{\alpha}$
- In Petri nets:
 - Variables are places (domain is N)
 - Initial state is initial marking
 - Events are transitions
 - The next-state function is defined by weighted (inhibitor) arcs

Decision Diagrams

- Encoding sets: Quasi-reduced Ordered
 Multi-valued Decision Diagrams (MDD)
 - Nodes encode decisions (evaluation of a variable)
 - Arcs encode outcomes (values of a variable)
 - Terminal nodes encode result (0 or 1)
 - Arcs leading to 0 are not drawn
 - Ordered: same variable order on all paths
 - Quasi-reduced: no 2 nodes with the same children

Semantics:

- Each path from the root node to 1 encodes a tuple
- Components assume the values written on the arcs

Decision Diagrams

- Encoding sets: Quasi-reduced Ordered
 Multi-valued Decision Diagrams (MDD)
 - Nodes encode decisions (evaluation of a variable)
 - Arcs encode outcomes (values of a variable)
 - Terminal nodes encode result (0 or 1)
 - Arcs leading to 0 are not drawn
 - Ordered: same variable order on all paths
 - Quasi-reduced: no 2 nodes with the same children

Semantics:

- Each path from the root node to 1 encodes a tuple
- Components assume the values written on the arcs
- Efficient recursive operations
 - Heavy caching

 $S(n_5) = \{(0,0,0), (1,0,0),$

()

 n_{4}^{--}

 \mathbf{n}_2

0

0

 n_3

0

0

(0,1,0), (0,0,1)

 p_3

 \mathbf{p}_2

 p_1

- General description of MDD-like next-state representations
- An Abstract Next-State Descriptor (ANSD) is a tuple (*D*, *lvl*, *next*):
 - D is the set of descriptors (≈MDD nodes) incl. terminal empty and identity;
 - $lvl : D \rightarrow \mathbb{N}$ is the **level** function (used to assign descriptors to variables);
 - next : D × N × N → D is the indexing function that computes a child descriptor one level lower from a (source, target) index pair
- Can be regarded as a common interface for...

- General description of MDD-like next-state representations
- An Abstract Next-State Descriptor (ANSD) is a tuple (D, lvl, next):
 - D is the set of descriptors (≈MDD nodes) incl. terminal empty and identity;
 - $lvl : D \rightarrow \mathbb{N}$ is the **level** function (used to assign descriptors to variables);
 - next : D × N × N → D is the indexing function that computes a child descriptor one level lower from a (source, target) index pair
- Can be regarded as a common interface for...
 - Kroenecker matrices, matrix diagrams

- General description of MDD-like next-state representations
- An Abstract Next-State Descriptor (ANSD) is a tuple (*D*, *lvl*, *next*):
 - D is the set of descriptors (≈MDD nodes) incl. terminal empty and identity;
 - $lvl : D \rightarrow \mathbb{N}$ is the **level** function (used to assign descriptors to variables);
 - next : D × N × N → D is the indexing function that computes a child descriptor one level lower from a (source, target) index pair
- Can be regarded as a common interface for...
 - Kroenecker matrices, matrix diagrams, MDDs with 2k levels, etc.

- Very simple representation for Petri nets:
 - Descriptors encode transition effect on a single place
 - $d = \langle W^{-}(t, p), W^{\circ}(t, p), W^{+}(t, p), d' \rangle$ (+terminal identity 1)
 - $next(d, i, j) = \begin{cases} d', & w^- \le i < w^\circ \land j = i w^- + w^+ \\ \mathbf{0}, & \text{otherwise} \end{cases}$

V. Molnár, I. Majzik: Saturation Enhanced with Conditional Locality: Application to Petri Nets, PN'19, June 27.

- Very simple representation for Petri nets:
 - Descriptors encode transition effect on a single place
 - $d = \langle W^{-}(t, p), W^{\circ}(t, p), W^{+}(t, p), d' \rangle$ (+terminal identity 1)
 - $next(d, i, j) = \begin{cases} d', & w^- \le i < w^\circ \land j = i w^- + w^+ \\ \mathbf{0}, & \text{otherwise} \end{cases}$

- Very simple representation for Petri nets:
 - Descriptors encode transition effect on a single place
 - $d = \langle W^{-}(t, p), W^{\circ}(t, p), W^{+}(t, p), d' \rangle$ (+terminal identity 1)
 - $next(d, i, j) = \begin{cases} d', & w^- \le i < w^\circ \land j = i w^- + w^+ \\ \mathbf{0}, & \text{otherwise} \end{cases}$

Dependencies & Locality

Basic dependencies between events and variables:

Locally invariant (–)	Locally read-only (r)	Locally read-write (rw)	
Value of variable does not affect the outcome of event	Value of variable does not change but affects outcome	Value of variable can be changed by the event	
	L		
		•	

	p ₁	p ₂	p ₃
I ₁	rw	r	r
I ₂	r	rw	r
l ₃	r	r	rw
f ₁	rw	_	-
f ₂	_	rw	_
f ₃	_	_	rw

NGARIAN

- Locality: Events usually depend on a subset of variables only
 - Next-state relation can be defined over these supporting variables

Dependencies & Locality

Basic dependencies between events and variables:

Locall	Locally invariant (–)		Locally read-only (r)		Locally read-write (rw)
Value of affect the	Value of variable does not affect the outcome of event		Value of variable does not change but affects outcome		Value of variable can be changed by the event
	p ₁	p ₂	p ₃	Lo	cal 📻
I ₁	rw	r	r		
I ₂	r	rw	r		p_1
l ₃	r	r	rw	_	
f ₁	rw	_	-		
f ₂	-	rw	-		VER A
f ₃	_	_	rw	f ₃	

- Locality: Events usually depend on a subset of variables only
 - Next-state relation can be defined over these supporting variables

- Saturation is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
 - Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable

	p ₁	p ₂	p ₃
I ₁	rw	r	r
l ₂	r	rw	r
l ₃	r	r	rw
f_1	rw	_	-
f ₂	-	rw	-
f ₃	_	_	rw

- Saturation is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
 - Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
 - $Top(\alpha)$ is the highest supporting variable in the encoding MDD

	p ₁	p ₂	p ₃
I ₁	rw	r	r
I ₂	r	rw	r
l ₃	r	r	rw
f ₁	rw	_	_
f ₂	_	rw	-
f ₃	_	_	rw

- Saturation is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
 - Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
 - $Top(\alpha)$ is the highest supporting variable in the encoding MDD

•
$$\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$$

• $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$

		p ₁	p ₂	p ₃
	ا ۱	rw	r	r
\mathcal{E}_3	l ₂	r	rw	r
	l ₃	r	r	rw
\mathcal{E}_1	f ₁	rw	-	-
\mathcal{E}_2	f ₂	_	rw	_
\mathcal{E}_3	f ₃	_	_	rw

- Saturation is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
 - Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
 - $Top(\alpha)$ is the highest supporting variable in the encoding MDD
 - $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
 - $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- Saturated MDD node n:
 - $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where k = lvl(n)
 - Children of n are saturated (0 and 1 are saturated)
- Starting from a node n encoding $S(n) = S^0$
 - Recursively saturate children

- Saturation is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
 - Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
 - $Top(\alpha)$ is the highest supporting variable in the encoding MDD
 - $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
 - $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- Saturated MDD node n:
 - $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where k = lvl(n)
 - Children of n are saturated (0 and 1 are saturated)
- Starting from a node n encoding $S(n) = S^0$
 - Recursively saturate children then compute fixed point

- Saturation is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
 - Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
 - $Top(\alpha)$ is the highest supporting variable in the encoding MDD
 - $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
 - $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- Saturated MDD node n:
 - $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where k = lvl(n)
 - Children of n are saturated (0 and 1 are saturated)
- Starting from a node n encoding $S(n) = S^0$
 - Recursively saturate children then compute fixed point

- Saturation is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
 - Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \dots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
 - $Top(\alpha)$ is the highest supporting variable in the encoding MDD
 - $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
 - $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- Saturated MDD node n:
 - $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where k = lvl(n)
 - Children of n are saturated (0 and 1 are saturated)
- Starting from a node n encoding $S(n) = S^0$
 - Recursively saturate children then compute fixed point

- Saturation is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
 - Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \dots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
 - $Top(\alpha)$ is the highest supporting variable in the encoding MDD
 - $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
 - $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- Saturated MDD node n:
 - $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where k = lvl(n)
 - Children of n are saturated (0 and 1 are saturated)
- Starting from a node n encoding S(n) = S⁰
 - Recursively saturate children then compute fixed point

- Saturation is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
 - Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \dots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
 - $Top(\alpha)$ is the highest supporting variable in the encoding MDD
 - $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
 - $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- Saturated MDD node n:
 - $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where k = lvl(n)
 - Children of n are saturated (0 and 1 are saturated)
- Starting from a node n encoding S(n) = S⁰
 - Recursively saturate children then compute fixed point

- Saturation is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
 - Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \dots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
 - $Top(\alpha)$ is the highest supporting variable in the encoding MDD
 - $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
 - $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- Saturated MDD node n:
 - $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where k = lvl(n)
 - Children of n are saturated (0 and 1 are saturated)
- Starting from a node n encoding S(n) = S⁰
 - Recursively saturate children then compute fixed point

- Saturation is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
 - Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
 - $Top(\alpha)$ is the highest supporting variable in the encoding MDD

•
$$\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$$

- $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- Saturated MDD node n:
 - $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where k = lvl(n)
 - Children of n are saturated (0 and 1 are saturated)
- Starting from a node n encoding S(n) = S⁰
 - Recursively saturate children then compute fixed point

Cache hit!

- Saturation is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
 - Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \dots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
 - $Top(\alpha)$ is the highest supporting variable in the encoding MDD
 - $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
 - $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- Saturated MDD node n:
 - $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where k = lvl(n)
 - Children of n are saturated (0 and 1 are saturated)
- Starting from a node n encoding S(n) = S⁰
 - Recursively saturate children then compute fixed point

- Saturation is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
 - Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
 - $Top(\alpha)$ is the highest supporting variable in the encoding MDD

•
$$\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$$

- $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- Saturated MDD node n:
 - $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where k = lvl(n)
 - Children of n are saturated (0 and 1 are saturated)
- Starting from a node n encoding S(n) = S⁰
 - Recursively saturate children then compute fixed point

Cache miss!

- Saturation is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
 - Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
 - $Top(\alpha)$ is the highest supporting variable in the encoding MDD
 - $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
 - $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- Saturated MDD node n:
 - $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where k = lvl(n)
 - Children of n are saturated (0 and 1 are saturated)
- Starting from a node n encoding S(n) = S⁰
 - Recursively saturate children then compute fixed point

- Saturation is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
 - Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
 - $Top(\alpha)$ is the highest supporting variable in the encoding MDD
 - $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
 - $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- Saturated MDD node n:
 - $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where k = lvl(n)
 - Children of n are saturated (0 and 1 are saturated)
- Starting from a node n encoding $S(n) = S^0$
 - Recursively saturate children then compute fixed point

- Saturation is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
 - Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
 - $Top(\alpha)$ is the highest supporting variable in the encoding MDD
 - $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
 - $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- Saturated MDD node n:
 - $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where k = lvl(n)
 - Children of n are saturated (0 and 1 are saturated)
- Starting from a node n encoding $S(n) = S^0$
 - Recursively saturate children then compute fixed point

- Saturation is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
 - Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
 - $Top(\alpha)$ is the highest supporting variable in the encoding MDD
 - $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
 - $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- Saturated MDD node n:
 - $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where k = lvl(n)
 - Children of n are saturated (0 and 1 are saturated)
- Starting from a node n encoding $S(n) = S^0$
 - Recursively saturate children then compute fixed point

In the final MDD:

only saturated nodes

- Saturation is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
 - Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
 - $Top(\alpha)$ is the highest supporting variable in the encoding MDD
 - $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
 - $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- Saturated MDD node n:
 - $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where k = lvl
 - Children of n are saturated
- Starting from a node n er
 - Recursively saturate child

Less intermediate nodes: better performance

In the final MDD:

only saturated nodes

Conditional Locality

Additional dependency class between events and variables:

Locally invariant	Locally read-only Locally read-only		ad-write
Value of variable does not affect the outcome of event	Value of variable does not change but affects outcome	Value of variable can b changed by the event	
	Conditionally read-only		
Intuition:	For some values of some variables (guard) the event does not change the variable		

Saturation exploits that independent variables do not change when firing

- This might be true for supporting variables as well
 - Definitely true for read-only
 - Conditionally true for conditionally read-only
- In other words...
 - If an event is conditionally local on a variable, then it can be split s.t. one part is read-only and the other is read-write

Conditional

locality

Enhanced Saturation

- Main idea:
 - Compute local fixed point with conditionally local events
 - Remember and cache the effect of higher (unaffected) variables
- Advantages:
 - Conditional *Top* values may be lower
 - Conditionally saturated nodes are more likely to be final
- Disadvantages:
 - The effect of higher variables must be remembered
 - (main motivation of constrained saturation)
- With an **ANSD representation** *d*:
 - next(d, i, i) is the conditionally local part (read-only on this level)
 - And the resulting descriptor d' encodes the effect of i on the event!
 - We can fire this part on a lower level any number of times
 - next(d, i, j) with $i \neq j$ is the part we have to fire on this level

Example

	p ₁	p ₂	p ₃
I ₁	rw	r	r
l ₂	r	rw	r
l ₃	r	r	rw
f ₁	rw	-	-
f ₂	_	rw	-
f ₃	_	_	rw

Assume a variable ordering (p₁, p₂, p₃)

HUNGARIAN

OF SCIENCES

ACADEMY

(S) (RG)

Example

	p ₁	p ₂	p ₃
I ₁	rw	r	r
l ₂	r	rw	r
l ₃	r	r	rw
f ₁	rw	-	-
f ₂	-	rw	-
f ₃	-	_	rw

Assume a variable ordering (p₁, p₂, p₃)

UNGARIAN

OF SCIENCES

ACADEMY

RG)

- For saturation
 - Everything except f_1 and f_2 must be fired on top level

Example

	p ₁	p ₂	p ₃
I ₁	rw	r	r
l ₂	r	rw	r
l ₃	r	r	rw
f ₁	rw	-	-
f ₂	-	rw	-
f ₃	_	_	rw

- Assume a variable ordering (p₁, p₂, p₃)
- For saturation
 - Everything except f₁ and f₂ must be fired on top level
- For saturation with conditional locality
 - l_1 and l_2 can also be fired lower if enabled
 - (the fixed point iteration will not change p_2 and/or p_3)

Details and Discussion

- Modified saturation algorithm:
 - $Saturate(n) \rightarrow Saturate(n, d)$ Computes saturated node
 - Saturate now has next-state relation as a parameter (represented by an ANSD)
 - $SatRelProd(n, d) \rightarrow SatRelProd(n, d_{sat}, d_{fire})$
 - Relational product still gets next-state relation to fire $(d \rightarrow d_{fire})$ image of event
 - Plus the next-state relation to saturate with (*d_{sat}*, for conditionally local events)
 - Recursion: pass next(d, j, j) for d_{sat} and next(d, i, j) for d_{fire}
- A generalization of constrained saturation-based methods:
 - Events do not have to be partitioned anymore (), this is automatic
 - Contraints/priorities/synchronization can be directly encoded in the ANSD
- Overhead?
 - Cache fragmentation because of multiple possible *d* parameters
 - Offset by less MDD nodes created during saturation
 - Degrades to saturation without (conditionally) read-only dependencies

Computes

Details and Discussion

- Modified saturation algorithm:
 - $Saturate(n) \rightarrow Saturate(n, d)$ Computes saturated node
 - Saturate now has next-state relation as a parameter (represented by an ANSD)
 - $SatRelProd(n, d) \rightarrow SatRelProd(n, d_{sat}, d_{fire})$
 - Relational product still gets next-state relation to fire $(d \rightarrow d_{fire})$ (image of event
 - Plus the next-state relation to saturate with (*d_{sat}*, for conditionally local events)
 - Recursion: pass next(d, j, j) for d_{sat} and next(d, i, j) for d_{fire}
- A **generalization** of constrained saturation-based methods:
 - Events do not have to be partitioned anymore (), this is automatic
 - Contraints/priorities/synchronization can be directly encoded in the ANSD
- Overhead?

No real overhead expected for Petri nets

Token count may either enable or disable transition, value is not used elsewhere (only two possible child descriptors: d' and **0**)

Computes

- Implemented saturation (SA) and generalized saturation (GSA)
- Models: (almost) all 743 models from MCC (as of January 2019)
- Variable orders:
 - Generated with sloan algorithm (recommended by Amparore et al, 2018)

OF SCIENCES

- Implemented saturation (SA) and generalized saturation (GSA)
- Models: (almost) all 743 models from MCC (as of January 2019)
- Variable orders:
 - Generated with sloan algorithm (recommended by Amparore et al, 2018)

OF SCIENCES

- Implemented saturation (SA) and generalized saturation (GSA)
- Models: (almost) all 743 models from MCC (as of January 2019)
- Variable orders:
 - Generated with sloan algorithm (recommended by Amparore et al, 2018)
 - Modified sloan leaving out read-only dependencies

- Implemented saturation (SA) and generalized saturation (GSA)
- Models: (almost) all 743 models from MCC (as of January 2019)
- Variable orders:
 - Generated with sloan algorithm (recommended by Amparore et al, 2018)
 - Modified sloan leaving out read-only dependencies
- Which algorithm and which variable order?
 - Modified sloan vs. Sloan (MDD size, difference in 117 models)
 - Modified sloan smaller MDD: 69/117 larger MDD: 39/117
 - GSA with modified sloan vs. SA with sloan
 - GSA >2x faster: 78 models >2x slower: 16 models
- More research on (variable ordering, algorithm) pairs is needed

Summary

Saturation Enhanced with Conditional Locality

Conditional Locality

- Finer definition of event-variable dependencies
- Enhanced Saturation
 - No need to partition next-state relation (done automatically)
 - Generalization of constrained saturation-based approaches
 - Enhanced saturation effect may lead to better performance

Application to Petri Nets

- Evaluation on models of the MCC
 - Degrades to saturation without conditional locality
 - Often orders of magnitude faster
 - Virtually no overhead otherwise

Future work: investigate more general models (e.g., statecharts)

