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Partitioned Transition System

 Low-level formalism that preserves structure of high-level model

 A partitioned transition system (PTS) is a tuple 𝑉,𝐷, 𝑆0, ℰ,𝒩 s.t.:
 V is the set of variables

 𝐷 is the domain function (𝐷 𝑥𝑘 ⊆ ℕ for all 𝑥𝑘 ∈ 𝑉)

 𝑆0 ⊆ መ𝑆 is the set of initial states ( መ𝑆 is the potential state space)

 ℰ is the set of high-level events

 𝒩 ⊆ መ𝑆 × መ𝑆 is the next-state relation (function), 
partitioned by ℰ such that 𝒩 = 𝛼∈ℰ𝒩𝛼ڂ

 In Petri nets:
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Partitioned Transition System

 Low-level formalism that preserves structure of high-level model

 A partitioned transition system (PTS) is a tuple 𝑉,𝐷, 𝑆0, ℰ,𝒩 s.t.:
 V is the set of variables

 𝐷 is the domain function (𝐷 𝑥𝑘 ⊆ ℕ for all 𝑥𝑘 ∈ 𝑉)

 𝑆0 ⊆ መ𝑆 is the set of initial states ( መ𝑆 is the potential state space)

 ℰ is the set of high-level events

 𝒩 ⊆ መ𝑆 × መ𝑆 is the next-state relation (function), 
partitioned by ℰ such that 𝒩 = 𝛼∈ℰ𝒩𝛼ڂ

 In Petri nets:

 Variables are places (domain is ℕ)

 Initial state is initial marking

 Events are transitions

 The next-state function is defined by
weighted (inhibitor) arcs
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Decision Diagrams

 Encoding sets: Quasi-reduced Ordered
Multi-valued Decision Diagrams (MDD)

 Nodes encode decisions (evaluation of a variable)

 Arcs encode outcomes (values of a variable)

 Terminal nodes encode result (0 or 1)

 Arcs leading to 0 are not drawn

 Ordered: same variable order on all paths

 Quasi-reduced: no 2 nodes with the same children

 Semantics:

 Each path from the root node to 1 encodes a tuple

 Components assume the values written on the arcs
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Decision Diagrams

 Encoding sets: Quasi-reduced Ordered
Multi-valued Decision Diagrams (MDD)

 Nodes encode decisions (evaluation of a variable)

 Arcs encode outcomes (values of a variable)

 Terminal nodes encode result (0 or 1)

 Arcs leading to 0 are not drawn

 Ordered: same variable order on all paths

 Quasi-reduced: no 2 nodes with the same children

 Semantics:

 Each path from the root node to 1 encodes a tuple

 Components assume the values written on the arcs

 Efficient recursive operations

 Heavy caching
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Abstract Next-State Descriptor (Marussy et al, PN’17)

 General description of MDD-like next-state representations

 An Abstract Next-State Descriptor (ANSD) is a tuple (𝒟, 𝑙𝑣𝑙, 𝑛𝑒𝑥𝑡):

 𝒟 is the set of descriptors (≈MDD nodes) incl. terminal empty and identity;

 𝑙𝑣𝑙 ∶ 𝒟 → ℕ is the level function (used to assign descriptors to variables);

 𝑛𝑒𝑥𝑡 ∶ 𝒟 × ℕ × ℕ → 𝒟 is the indexing function that computes a child
descriptor one level lower from a (source, target) index pair

 Can be regarded as a common interface for…

 Kroenecker matrices

15

1 2 …

1 +

2 +

… …

fr
o

m

to

1 2 …

1 +

2 +

… …

fr
o

m Lvl#1

Lvl#2

1



V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.
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 General description of MDD-like next-state representations
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 Can be regarded as a common interface for…

 Kroenecker matrices, matrix diagrams
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Abstract Next-State Descriptor (Marussy et al, PN’17)

 General description of MDD-like next-state representations

 An Abstract Next-State Descriptor (ANSD) is a tuple (𝒟, 𝑙𝑣𝑙, 𝑛𝑒𝑥𝑡):

 𝒟 is the set of descriptors (≈MDD nodes) incl. terminal empty and identity;

 𝑙𝑣𝑙 ∶ 𝒟 → ℕ is the level function (used to assign descriptors to variables);

 𝑛𝑒𝑥𝑡 ∶ 𝒟 × ℕ × ℕ → 𝒟 is the indexing function that computes a child
descriptor one level lower from a (source, target) index pair

 Can be regarded as a common interface for…

 Kroenecker matrices, matrix diagrams, MDDs with 2𝑘 levels, etc.
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Abstract Next-State Descriptor (Marussy et al, PN’17)

 Very simple representation for Petri nets:

 Descriptors encode transition effect on a single place

 𝑑 = 〈𝑊− 𝑡, 𝑝 ,𝑊∘ 𝑡, 𝑝 ,𝑊+ 𝑡, 𝑝 , 𝑑′〉 (+terminal identity 1)

 𝑛𝑒𝑥𝑡 𝑑, 𝑖, 𝑗 = ቊ
𝑑′, 𝑤− ≤ 𝑖 < 𝑤∘ ∧ 𝑗 = 𝑖 − 𝑤− + 𝑤+

𝟎, otherwise
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Dependencies & Locality

 Basic dependencies between events and variables:

 Locality: Events usually depend on a subset of variables only

 Next-state relation can be defined over these supporting variables
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Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable
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 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD
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Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children
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Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point
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Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point
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Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point
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Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point
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Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point

34

1



V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Saturation
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Cache miss!

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point
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Saturation
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 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point
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Saturation
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 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point
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Saturation

38

1

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point
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 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point  

Saturation
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In the final MDD:
only saturated nodes



V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point

Saturation
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Less intermediate nodes: 
better performance

In the final MDD:
only saturated nodes
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Enhancing Saturation with Conditional Locality

41
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Value of variable does not
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Conditional Locality

 Additional dependency class between events and variables:

 Intuition:

 Saturation exploits that independent variables do not change when firing

 This might be true for supporting variables as well

 Definitely true for read-only

 Conditionally true for conditionally read-only

 In other words…

 If an event is conditionally local on a variable, then it can be split s.t.
one part is read-only and the other is read-write
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Enhanced Saturation

 Main idea:

 Compute local fixed point with conditionally local events

 Remember and cache the effect of higher (unaffected) variables

 Advantages:

 Conditional 𝑇𝑜𝑝 values may be lower 

 Conditionally saturated nodes are more likely to be final

 Disadvantages:

 The effect of higher variables must be remembered

 (main motivation of constrained saturation)

 With an ANSD representation 𝑑:

 𝒏𝒆𝒙𝒕(𝒅, 𝒊, 𝒊) is the conditionally local part (read-only on this level)

 And the resulting descriptor 𝑑′ encodes the effect of 𝑖 on the event!

 We can fire this part on a lower level any number of times

 𝒏𝒆𝒙𝒕(𝒅, 𝒊, 𝒋) with 𝒊 ≠ 𝒋 is the part we have to fire on this level
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Example

 Assume a variable ordering (𝑝1, 𝑝2, 𝑝3)

44
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Example

 Assume a variable ordering (𝑝1, 𝑝2, 𝑝3)

 For saturation

 Everything except 𝑓1 and 𝑓2 must be fired on top level
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Example

 Assume a variable ordering (𝑝1, 𝑝2, 𝑝3)

 For saturation

 Everything except 𝑓1 and 𝑓2 must be fired on top level

 For saturation with conditional locality

 𝑙1 and 𝑙2 can also be fired lower if enabled

 (the fixed point iteration will not change 𝑝2 and/or 𝑝3)
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Details and Discussion

 Modified saturation algorithm:

 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒 𝑛 → 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒(𝑛, 𝒅)

 Saturate now has next-state relation as a parameter (represented by an ANSD) 

 𝑆𝑎𝑡𝑅𝑒𝑙𝑃𝑟𝑜𝑑 𝑛, 𝑑 → 𝑆𝑎𝑡𝑅𝑒𝑙𝑃𝑟𝑜𝑑 𝑛, 𝒅𝒔𝒂𝒕, 𝒅𝒇𝒊𝒓𝒆
 Relational product still gets next-state relation to fire (𝑑 → 𝒅𝒇𝒊𝒓𝒆)

 Plus the next-state relation to saturate with (𝒅𝒔𝒂𝒕, for conditionally local events)

 Recursion: pass 𝒏𝒆𝒙𝒕(𝒅, 𝒋, 𝒋) for 𝒅𝒔𝒂𝒕 and 𝒏𝒆𝒙𝒕(𝒅, 𝒊, 𝒋) for 𝒅𝒇𝒊𝒓𝒆

 A generalization of constrained saturation-based methods:

 Events do not have to be partitioned anymore (ℰ𝑘), this is automatic

 Contraints/priorities/synchronization can be directly encoded in the ANSD

 Overhead?

 Cache fragmentation because of multiple possible 𝒅 parameters

 Offset by less MDD nodes created during saturation

 Degrades to saturation without (conditionally) read-only dependencies

47
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Details and Discussion

 Modified saturation algorithm:

 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒 𝑛 → 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒(𝑛, 𝒅)

 Saturate now has next-state relation as a parameter (represented by an ANSD) 

 𝑆𝑎𝑡𝑅𝑒𝑙𝑃𝑟𝑜𝑑 𝑛, 𝑑 → 𝑆𝑎𝑡𝑅𝑒𝑙𝑃𝑟𝑜𝑑 𝑛, 𝒅𝒔𝒂𝒕, 𝒅𝒇𝒊𝒓𝒆
 Relational product still gets next-state relation to fire (𝑑 → 𝒅𝒇𝒊𝒓𝒆)

 Plus the next-state relation to saturate with (𝒅𝒔𝒂𝒕, for conditionally local events)

 Recursion: pass 𝒏𝒆𝒙𝒕(𝒅, 𝒋, 𝒋) for 𝒅𝒔𝒂𝒕 and 𝒏𝒆𝒙𝒕(𝒅, 𝒊, 𝒋) for 𝒅𝒇𝒊𝒓𝒆

 A generalization of constrained saturation-based methods:

 Events do not have to be partitioned anymore (ℰ𝑘), this is automatic

 Contraints/priorities/synchronization can be directly encoded in the ANSD

 Overhead?

 Cache fragmentation because of multiple next-state relation parameters

 Offset by less MDD nodes created during saturation

 Degrades to saturation without (conditionally) read-only dependencies
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No real overhead expected for Petri nets
Token count may either enable or disable transition, value is not used elsewhere

(only two possible child descriptors: 𝑑′ and 0)

Computes
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Computes saturated node
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Empirical Evaluation

 Implemented saturation (SA) and generalized saturation (GSA)

 Models: (almost) all 743 models from MCC (as of January 2019)

 Variable orders: 

 Generated with sloan algorithm (recommended by Amparore et al, 2018)

49

R
u

n
n

in
g

ti
m

e

To
ta

l #
 o

f 
M

D
D

 n
o

d
es

cr
e

at
e

d

>2x faster
(53/274 cases)

No overhead
otherwise

Degrades to
saturation ≤ MDD nodes created

in every case



V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Empirical Evaluation

 Implemented saturation (SA) and generalized saturation (GSA)

 Models: (almost) all 743 models from MCC (as of January 2019)

 Variable orders: 

 Generated with sloan algorithm (recommended by Amparore et al, 2018)
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Locality: Application to Petri Nets, PN’19, June 27.

Empirical Evaluation

 Implemented saturation (SA) and generalized saturation (GSA)

 Models: (almost) all 743 models from MCC (as of January 2019)

 Variable orders: 

 Generated with sloan algorithm (recommended by Amparore et al, 2018)

 Modified sloan leaving out read-only dependencies

51

R
u

n
n

in
g

ti
m

e

To
ta

l #
 o

f 
M

D
D

 n
o

d
es

cr
e

at
e

d

>2x faster
(69/298 cases)



V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Empirical Evaluation

 Implemented saturation (SA) and generalized saturation (GSA)

 Models: (almost) all 743 models from MCC (as of January 2019)

 Variable orders: 

 Generated with sloan algorithm (recommended by Amparore et al, 2018)

 Modified sloan leaving out read-only dependencies

 Which algorithm and which variable order?

 Modified sloan vs. Sloan (MDD size, difference in 117 models)

 Modified sloan smaller MDD: 69/117 larger MDD: 39/117

 GSA with modified sloan vs. SA with sloan

 GSA >2x faster: 78 models >2x slower: 16 models

 More research on (variable ordering, algorithm) pairs is needed
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Summary

Saturation Enhanced with Conditional Locality

 Conditional Locality

 Finer definition of event-variable dependencies

 Enhanced Saturation

 No need to partition next-state relation (done automatically)

 Generalization of constrained saturation-based approaches

 Enhanced saturation effect may lead to better performance

Application to Petri Nets

 Evaluation on models of the MCC

 Degrades to saturation without conditional locality

 Often orders of magnitude faster

 Virtually no overhead otherwise

Future work: investigate more general models (e.g., statecharts)

53


