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Partitioned Transition System

 Low-level formalism that preserves structure of high-level model

 A partitioned transition system (PTS) is a tuple 𝑉,𝐷, 𝑆0, ℰ,𝒩 s.t.:
 V is the set of variables

 𝐷 is the domain function (𝐷 𝑥𝑘 ⊆ ℕ for all 𝑥𝑘 ∈ 𝑉)

 𝑆0 ⊆ መ𝑆 is the set of initial states ( መ𝑆 is the potential state space)

 ℰ is the set of high-level events

 𝒩 ⊆ መ𝑆 × መ𝑆 is the next-state relation (function), 
partitioned by ℰ such that 𝒩 = 𝛼∈ℰ𝒩𝛼ڂ

 In Petri nets:
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Partitioned Transition System

 Low-level formalism that preserves structure of high-level model

 A partitioned transition system (PTS) is a tuple 𝑉,𝐷, 𝑆0, ℰ,𝒩 s.t.:
 V is the set of variables

 𝐷 is the domain function (𝐷 𝑥𝑘 ⊆ ℕ for all 𝑥𝑘 ∈ 𝑉)

 𝑆0 ⊆ መ𝑆 is the set of initial states ( መ𝑆 is the potential state space)

 ℰ is the set of high-level events

 𝒩 ⊆ መ𝑆 × መ𝑆 is the next-state relation (function), 
partitioned by ℰ such that 𝒩 = 𝛼∈ℰ𝒩𝛼ڂ

 In Petri nets:

 Variables are places (domain is ℕ)

 Initial state is initial marking

 Events are transitions

 The next-state function is defined by
weighted (inhibitor) arcs
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Decision Diagrams

 Encoding sets: Quasi-reduced Ordered
Multi-valued Decision Diagrams (MDD)

 Nodes encode decisions (evaluation of a variable)

 Arcs encode outcomes (values of a variable)

 Terminal nodes encode result (0 or 1)

 Arcs leading to 0 are not drawn

 Ordered: same variable order on all paths

 Quasi-reduced: no 2 nodes with the same children

 Semantics:

 Each path from the root node to 1 encodes a tuple

 Components assume the values written on the arcs
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Decision Diagrams

 Encoding sets: Quasi-reduced Ordered
Multi-valued Decision Diagrams (MDD)

 Nodes encode decisions (evaluation of a variable)

 Arcs encode outcomes (values of a variable)

 Terminal nodes encode result (0 or 1)

 Arcs leading to 0 are not drawn

 Ordered: same variable order on all paths

 Quasi-reduced: no 2 nodes with the same children

 Semantics:

 Each path from the root node to 1 encodes a tuple

 Components assume the values written on the arcs

 Efficient recursive operations

 Heavy caching
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Abstract Next-State Descriptor (Marussy et al, PN’17)

 General description of MDD-like next-state representations

 An Abstract Next-State Descriptor (ANSD) is a tuple (𝒟, 𝑙𝑣𝑙, 𝑛𝑒𝑥𝑡):

 𝒟 is the set of descriptors (≈MDD nodes) incl. terminal empty and identity;

 𝑙𝑣𝑙 ∶ 𝒟 → ℕ is the level function (used to assign descriptors to variables);

 𝑛𝑒𝑥𝑡 ∶ 𝒟 × ℕ × ℕ → 𝒟 is the indexing function that computes a child
descriptor one level lower from a (source, target) index pair

 Can be regarded as a common interface for…

 Kroenecker matrices
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 Can be regarded as a common interface for…

 Kroenecker matrices, matrix diagrams
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Abstract Next-State Descriptor (Marussy et al, PN’17)

 General description of MDD-like next-state representations

 An Abstract Next-State Descriptor (ANSD) is a tuple (𝒟, 𝑙𝑣𝑙, 𝑛𝑒𝑥𝑡):

 𝒟 is the set of descriptors (≈MDD nodes) incl. terminal empty and identity;

 𝑙𝑣𝑙 ∶ 𝒟 → ℕ is the level function (used to assign descriptors to variables);

 𝑛𝑒𝑥𝑡 ∶ 𝒟 × ℕ × ℕ → 𝒟 is the indexing function that computes a child
descriptor one level lower from a (source, target) index pair

 Can be regarded as a common interface for…

 Kroenecker matrices, matrix diagrams, MDDs with 2𝑘 levels, etc.
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Abstract Next-State Descriptor (Marussy et al, PN’17)

 Very simple representation for Petri nets:

 Descriptors encode transition effect on a single place

 𝑑 = 〈𝑊− 𝑡, 𝑝 ,𝑊∘ 𝑡, 𝑝 ,𝑊+ 𝑡, 𝑝 , 𝑑′〉 (+terminal identity 1)

 𝑛𝑒𝑥𝑡 𝑑, 𝑖, 𝑗 = ቊ
𝑑′, 𝑤− ≤ 𝑖 < 𝑤∘ ∧ 𝑗 = 𝑖 − 𝑤− + 𝑤+

𝟎, otherwise

18

(0,1,1)

(0,1,0)

(0,1,0)

(0,1,1)

(0,1,0)

1

p3

p2

p1

Lock3 Lock2

Lock

Free Free

Free

p1

p3

p2

Lock2

Lock3 Lvl#2

Lvl#1

Lvl#3



V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Abstract Next-State Descriptor (Marussy et al, PN’17)

 Very simple representation for Petri nets:

 Descriptors encode transition effect on a single place

 𝑑 = 〈𝑊− 𝑡, 𝑝 ,𝑊∘ 𝑡, 𝑝 ,𝑊+ 𝑡, 𝑝 , 𝑑′〉 (+terminal identity 1)

 𝑛𝑒𝑥𝑡 𝑑, 𝑖, 𝑗 = ቊ
𝑑′, 𝑤− ≤ 𝑖 < 𝑤∘ ∧ 𝑗 = 𝑖 − 𝑤− + 𝑤+

𝟎, otherwise

19

(0,1,1)

(0,1,0)

(0,1,0)

(0,1,1)

(0,1,0)

1

p3

p2

p1

Lock3 Lock2

Lock

Free Free

Free

p1

p3

p2

Lock3 Lvl#2

Lvl#1

Lvl#3

Lock2



V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Abstract Next-State Descriptor (Marussy et al, PN’17)

 Very simple representation for Petri nets:

 Descriptors encode transition effect on a single place

 𝑑 = 〈𝑊− 𝑡, 𝑝 ,𝑊∘ 𝑡, 𝑝 ,𝑊+ 𝑡, 𝑝 , 𝑑′〉 (+terminal identity 1)

 𝑛𝑒𝑥𝑡 𝑑, 𝑖, 𝑗 = ቊ
𝑑′, 𝑤− ≤ 𝑖 < 𝑤∘ ∧ 𝑗 = 𝑖 − 𝑤− + 𝑤+

𝟎, otherwise

20

(0,1,1)

(0,1,0)

(0,1,0)

(0,1,1)

(0,1,0)

1

p3

p2

p1

Lock3 Lock2

Lock

Free Free

Free

p1

p3

p2

Lock3 Lvl#2

Lvl#1

Lvl#3

Lock2



V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Dependencies & Locality

 Basic dependencies between events and variables:

 Locality: Events usually depend on a subset of variables only

 Next-state relation can be defined over these supporting variables

21
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Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable
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𝒩𝛼
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Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children

26
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Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point
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Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point
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Saturation

 Saturation is an algorithm for state space generation of PTSs
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 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼
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 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point
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Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point
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Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point
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Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point
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Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point
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Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point
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Saturation

35
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Cache miss!

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point
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Saturation
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 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point
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 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point
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Saturation
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 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point
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 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point  

Saturation
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 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point

Saturation

40

1

Less intermediate nodes: 
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only saturated nodes
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Enhancing Saturation with Conditional Locality

41
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Conditional Locality

 Additional dependency class between events and variables:

 Intuition:

 Saturation exploits that independent variables do not change when firing

 This might be true for supporting variables as well

 Definitely true for read-only

 Conditionally true for conditionally read-only

 In other words…

 If an event is conditionally local on a variable, then it can be split s.t.
one part is read-only and the other is read-write

42
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Enhanced Saturation

 Main idea:

 Compute local fixed point with conditionally local events

 Remember and cache the effect of higher (unaffected) variables

 Advantages:

 Conditional 𝑇𝑜𝑝 values may be lower 

 Conditionally saturated nodes are more likely to be final

 Disadvantages:

 The effect of higher variables must be remembered

 (main motivation of constrained saturation)

 With an ANSD representation 𝑑:

 𝒏𝒆𝒙𝒕(𝒅, 𝒊, 𝒊) is the conditionally local part (read-only on this level)

 And the resulting descriptor 𝑑′ encodes the effect of 𝑖 on the event!

 We can fire this part on a lower level any number of times

 𝒏𝒆𝒙𝒕(𝒅, 𝒊, 𝒋) with 𝒊 ≠ 𝒋 is the part we have to fire on this level
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Example

 Assume a variable ordering (𝑝1, 𝑝2, 𝑝3)

44
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Example

 Assume a variable ordering (𝑝1, 𝑝2, 𝑝3)

 For saturation

 Everything except 𝑓1 and 𝑓2 must be fired on top level
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Example

 Assume a variable ordering (𝑝1, 𝑝2, 𝑝3)

 For saturation

 Everything except 𝑓1 and 𝑓2 must be fired on top level

 For saturation with conditional locality

 𝑙1 and 𝑙2 can also be fired lower if enabled

 (the fixed point iteration will not change 𝑝2 and/or 𝑝3)
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Details and Discussion

 Modified saturation algorithm:

 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒 𝑛 → 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒(𝑛, 𝒅)

 Saturate now has next-state relation as a parameter (represented by an ANSD) 

 𝑆𝑎𝑡𝑅𝑒𝑙𝑃𝑟𝑜𝑑 𝑛, 𝑑 → 𝑆𝑎𝑡𝑅𝑒𝑙𝑃𝑟𝑜𝑑 𝑛, 𝒅𝒔𝒂𝒕, 𝒅𝒇𝒊𝒓𝒆
 Relational product still gets next-state relation to fire (𝑑 → 𝒅𝒇𝒊𝒓𝒆)

 Plus the next-state relation to saturate with (𝒅𝒔𝒂𝒕, for conditionally local events)

 Recursion: pass 𝒏𝒆𝒙𝒕(𝒅, 𝒋, 𝒋) for 𝒅𝒔𝒂𝒕 and 𝒏𝒆𝒙𝒕(𝒅, 𝒊, 𝒋) for 𝒅𝒇𝒊𝒓𝒆

 A generalization of constrained saturation-based methods:

 Events do not have to be partitioned anymore (ℰ𝑘), this is automatic

 Contraints/priorities/synchronization can be directly encoded in the ANSD

 Overhead?

 Cache fragmentation because of multiple possible 𝒅 parameters

 Offset by less MDD nodes created during saturation

 Degrades to saturation without (conditionally) read-only dependencies
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Details and Discussion

 Modified saturation algorithm:

 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒 𝑛 → 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒(𝑛, 𝒅)

 Saturate now has next-state relation as a parameter (represented by an ANSD) 

 𝑆𝑎𝑡𝑅𝑒𝑙𝑃𝑟𝑜𝑑 𝑛, 𝑑 → 𝑆𝑎𝑡𝑅𝑒𝑙𝑃𝑟𝑜𝑑 𝑛, 𝒅𝒔𝒂𝒕, 𝒅𝒇𝒊𝒓𝒆
 Relational product still gets next-state relation to fire (𝑑 → 𝒅𝒇𝒊𝒓𝒆)

 Plus the next-state relation to saturate with (𝒅𝒔𝒂𝒕, for conditionally local events)

 Recursion: pass 𝒏𝒆𝒙𝒕(𝒅, 𝒋, 𝒋) for 𝒅𝒔𝒂𝒕 and 𝒏𝒆𝒙𝒕(𝒅, 𝒊, 𝒋) for 𝒅𝒇𝒊𝒓𝒆

 A generalization of constrained saturation-based methods:

 Events do not have to be partitioned anymore (ℰ𝑘), this is automatic

 Contraints/priorities/synchronization can be directly encoded in the ANSD

 Overhead?

 Cache fragmentation because of multiple next-state relation parameters

 Offset by less MDD nodes created during saturation

 Degrades to saturation without (conditionally) read-only dependencies
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No real overhead expected for Petri nets
Token count may either enable or disable transition, value is not used elsewhere

(only two possible child descriptors: 𝑑′ and 0)

Computes
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Empirical Evaluation

 Implemented saturation (SA) and generalized saturation (GSA)

 Models: (almost) all 743 models from MCC (as of January 2019)

 Variable orders: 

 Generated with sloan algorithm (recommended by Amparore et al, 2018)
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Empirical Evaluation

 Implemented saturation (SA) and generalized saturation (GSA)

 Models: (almost) all 743 models from MCC (as of January 2019)

 Variable orders: 

 Generated with sloan algorithm (recommended by Amparore et al, 2018)
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Empirical Evaluation

 Implemented saturation (SA) and generalized saturation (GSA)

 Models: (almost) all 743 models from MCC (as of January 2019)

 Variable orders: 

 Generated with sloan algorithm (recommended by Amparore et al, 2018)

 Modified sloan leaving out read-only dependencies
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Empirical Evaluation

 Implemented saturation (SA) and generalized saturation (GSA)

 Models: (almost) all 743 models from MCC (as of January 2019)

 Variable orders: 

 Generated with sloan algorithm (recommended by Amparore et al, 2018)

 Modified sloan leaving out read-only dependencies

 Which algorithm and which variable order?

 Modified sloan vs. Sloan (MDD size, difference in 117 models)

 Modified sloan smaller MDD: 69/117 larger MDD: 39/117

 GSA with modified sloan vs. SA with sloan

 GSA >2x faster: 78 models >2x slower: 16 models

 More research on (variable ordering, algorithm) pairs is needed
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Summary

Saturation Enhanced with Conditional Locality

 Conditional Locality

 Finer definition of event-variable dependencies

 Enhanced Saturation

 No need to partition next-state relation (done automatically)

 Generalization of constrained saturation-based approaches

 Enhanced saturation effect may lead to better performance

Application to Petri Nets

 Evaluation on models of the MCC

 Degrades to saturation without conditional locality

 Often orders of magnitude faster

 Virtually no overhead otherwise

Future work: investigate more general models (e.g., statecharts)
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