Saturation Enhanced with Conditional Locality: Application to Petri Nets

Vince Molnár^{1,2}, István Majzik¹

{**molnarv**,majzik}@mit.bme.hu

¹ Budapest University of Technology and Economics | Department of Measurement and Information Systems | Fault Tolerant Systems Research Group ² Hungarian Academy of Sciences | MTA-BME Lendület Research Group on Cyber-Physical Systems

Hungarian Academy of Sciences

- Model checking
	- **State space exploration**
	- **Property analysis**
- **Symbolic model checking**
	- Characteristic function
	- **Decision diagrams**
	- **Saturation algorithm**
- \blacksquare In this paper...
	- **Conditional locality**
	- General representations
	- **Enhanced saturation effect**

- Model checking
	- **State space exploration**
	- **Property analysis**
- **Symbolic model checking**
	- **Exercistic function**
	- **Decision diagrams**
	- **Saturation algorithm**
- \blacksquare In this paper...
	- **Conditional locality**
	- General representations
	- **Enhanced saturation effect**

- Model checking
	- **State space exploration**
	- **Property analysis**
- **Symbolic model checking**
	- **Exercistic function**
	- **Decision diagrams**
	- **Saturation algorithm**
- \blacksquare In this paper...
	- **Conditional locality**
	- General representations
	- **Enhanced saturation effect**

- Model checking
	- **State space exploration**
	- **Property analysis**
- **Symbolic model checking**
	- **Exercistic function**
	- **Decision diagrams**
	- **Saturation algorithm**
- In this paper...
	- **Conditional locality**
	- General representations
	- **Enhanced saturation effect**

- Model checking
	- **State space exploration**
	- **Property analysis**
- **Symbolic model checking**
	- **Exercistic function**
	- **Decision diagrams**
	- **Saturation algorithm**
- \blacksquare In this paper...
	- **Conditional locality**
	- General representations
	- **Enhanced saturation effect**

- Model checking
	- **State space exploration**
	- **Property analysis**
- **Symbolic model checking**
	- **Exercistic function**
	- **Decision diagrams**
	- **Saturation algorithm**
- \blacksquare In this paper...
	- **Conditional locality**
	- General representations
	- **Enhanced saturation effect**

- Low-level formalism that preserves structure of high-level model
- **A partitioned transition system (PTS)** is a tuple $(V, D, S^0, \mathcal{E}, \mathcal{N})$ s.t.:
	- V is the set of **variables**
	- *D* is the **domain** function $(D(x_k) \subseteq N$ for all $x_k \in V$)
	- S^0 \subseteq \hat{S} is the set of **initial states** (\hat{S} is the potential state space)
	- *E* is the set of high-level **events**
	- $\mathcal{N} \subseteq \hat{S} \times \hat{S}$ is the **next-state relation** (function), partitioned by $\mathcal E$ such that $\mathcal N = \bigcup_{\alpha \in \mathcal E} \mathcal N_\alpha$
- In Petri nets:

- Low-level formalism that preserves structure of high-level model
- **A partitioned transition system (PTS)** is a tuple $(V, D, S^0, \mathcal{E}, \mathcal{N})$ s.t.:
	- V is the set of **variables**
	- *D* is the **domain** function $(D(x_k) \subseteq N$ for all $x_k \in V$
	- S^0 \subseteq \hat{S} is the set of **initial states** (\hat{S} is the potential state space)
	- \blacktriangleright ϵ is the set of high-level **events**
	- $\mathcal{N} \subseteq \hat{S} \times \hat{S}$ is the **next-state relation** (function), partitioned by $\mathcal E$ such that $\mathcal N = \bigcup_{\alpha \in \mathcal E} \mathcal N_\alpha$
- \blacksquare In Petri nets:
	- Variables are **places** (domain is N)

- Low-level formalism that preserves structure of high-level model
- **A partitioned transition system (PTS)** is a tuple $(V, D, S^0, \mathcal{E}, \mathcal{N})$ s.t.:
	- V is the set of **variables**
	- *D* is the **domain** function $(D(x_k) \subseteq N$ for all $x_k \in V$)
	- $\mathbf{S}^0 \subseteq \hat{S}$ is the set of **initial states** (\hat{S} is the potential state space)
	- *E* is the set of high-level **events**
	- $\mathcal{N} \subseteq \hat{S} \times \hat{S}$ is the **next-state relation** (function), partitioned by $\mathcal E$ such that $\mathcal N = \bigcup_{\alpha \in \mathcal E} \mathcal N_\alpha$
- \blacksquare In Petri nets:
	- Variables are **places** (domain is N)
	- **Initial state is initial marking**

- Low-level formalism that preserves structure of high-level model
- **A partitioned transition system (PTS)** is a tuple $(V, D, S^0, \mathcal{E}, \mathcal{N})$ s.t.:
	- V is the set of **variables**
	- *D* is the **domain** function $(D(x_k) \subseteq N$ for all $x_k \in V$)
	- S^0 \subseteq \hat{S} is the set of **initial states** (\hat{S} is the potential state space)
	- E is the set of high-level **events**
	- $\mathcal{N} \subseteq \hat{S} \times \hat{S}$ is the **next-state relation** (function), partitioned by $\mathcal E$ such that $\mathcal N = \bigcup_{\alpha \in \mathcal E} \mathcal N_\alpha$
- \blacksquare In Petri nets:
	- Variables are **places** (domain is N)
	- **Initial state is initial marking**
	- Events are **transitions**

- Low-level formalism that preserves structure of high-level model
- **A partitioned transition system (PTS)** is a tuple $(V, D, S^0, \mathcal{E}, \mathcal{N})$ s.t.:
	- V is the set of **variables**
	- *D* is the **domain** function $(D(x_k) \subseteq N$ for all $x_k \in V$
	- S^0 \subseteq \hat{S} is the set of **initial states** (\hat{S} is the potential state space)
	- \blacktriangleright ϵ is the set of high-level **events**
	- $\mathcal{N} \subseteq \hat{S} \times \hat{S}$ is the **next-state relation** (function), partitioned by $\mathcal E$ such that $\mathcal N = \bigcup_{\alpha \in \mathcal E} \mathcal N_\alpha$
- \blacksquare In Petri nets:
	- Variables are **places** (domain is N)
	- **Initial state is initial marking**
	- Events are **transitions**
	- The next-state function is defined by **weighted (inhibitor) arcs**

Decision Diagrams

- Encoding sets: Quasi-reduced Ordered **Multi-valued Decision Diagrams (MDD)**
	- **Nodes** encode decisions (evaluation of a variable)
	- **Arcs** encode outcomes (values of a variable)
	- **Terminal nodes** encode result (**0** or **1**)
		- Arcs leading to **0** are not drawn
	- Ordered: same **variable order** on all paths
	- Quasi-reduced: no 2 nodes with the same children

Semantics:

- Each path from the root node to **1** encodes a tuple
- Components assume the values written on the arcs

Decision Diagrams

- **Encoding sets: Quasi-reduced Ordered Multi-valued Decision Diagrams (MDD)**
	- **Nodes** encode decisions (evaluation of a variable)
	- **Arcs** encode outcomes (values of a variable)
	- **Terminal nodes** encode result (**0** or **1**)
		- Arcs leading to **0** are not drawn
	- Ordered: same **variable order** on all paths
	- Quasi-reduced: no 2 nodes with the same children

Semantics:

- Each path from the root node to **1** encodes a tuple
- Components assume the values written on the arcs
- **Efficient recursive operations**
	- **Heavy caching**

 $S(n_5) = \{(0,0,0), (1,0,0),$

 $(0,1,0)$, $(0,0,1)$ }

1

0 1 0

1

n5

 $0/$ 1

 n_4 $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$

0 \ 1 0

1

 n_1

 p_3

 p_2

 p_1

 n_2

- General description of MDD-like next-state representations
- An **Abstract Next-State Descriptor (ANSD)** is a tuple $(D, lvl, next)$:
	- D is the set of **descriptors** (≈MDD nodes) incl. terminal **empty** and **identity**;
	- *lvl* : $D \rightarrow \mathbb{N}$ is the **level** function (used to assign descriptors to variables);
	- $next: D \times N \times N \rightarrow D$ is the **indexing** function that computes a child descriptor one level lower from a (*source*, *target*) index pair
- Can be regarded as a **common interface** for...

- General description of MDD-like next-state representations
- An **Abstract Next-State Descriptor (ANSD)** is a tuple $(D, lvl, next)$:
	- D is the set of **descriptors** (≈MDD nodes) incl. terminal **empty** and **identity**;
	- *lvl* : $D \rightarrow \mathbb{N}$ is the **level** function (used to assign descriptors to variables);
	- $next: D \times N \times N \rightarrow D$ is the **indexing** function that computes a child descriptor one level lower from a (*source*, *target*) index pair
- Can be regarded as a **common interface** for...
	- Kroenecker matrices, matrix diagrams

- General description of MDD-like next-state representations
- An **Abstract Next-State Descriptor (ANSD)** is a tuple $(D, lvl, next)$:
	- \mathcal{D} is the set of **descriptors** (≈MDD nodes) incl. terminal **empty** and **identity**;
	- $lvl: \mathcal{D} \rightarrow \mathbb{N}$ is the level function (used to assign descriptors to variables);
	- $next: D \times N \times N \rightarrow D$ is the **indexing** function that computes a child descriptor one level lower from a (*source*, *target*) index pair
- Can be regarded as a **common interface** for…
	- Kroenecker matrices, matrix diagrams, MDDs with $2k$ levels, etc.

- Very simple representation **for Petri nets**:
	- **Descriptors encode transition effect on a single place**
	- $d = \langle W^-(t, p), W^*(t, p), W^+(t, p), d' \rangle$ (+terminal identity 1)
	- \blacksquare next(d, i, j) = $\{$ d' , $w^- \le i < w^{\circ} \wedge j = i - w^- + w^+$, otherwise

V. Molnár, I. Majzik: *Saturation Enhanced with Conditional Locality: Application to Petri Nets*, PN'19, June 27.

- Very simple representation **for Petri nets**:
	- **Descriptors encode transition effect on a single place**
	- $d = \langle W^-(t, p), W^*(t, p), W^+(t, p), d' \rangle$ (+terminal identity 1)
	- \blacksquare next(d, i, j) = $\{$ d' , $w^- \le i < w^{\circ} \wedge j = i - w^- + w^+$, otherwise

- Very simple representation **for Petri nets**:
	- **Descriptors encode transition effect on a single place**
	- $d = \langle W^-(t, p), W^*(t, p), W^+(t, p), d' \rangle$ (+terminal identity 1)
	- \blacksquare next(d, i, j) = $\{$ d' , $w^- \le i < w^{\circ} \wedge j = i - w^- + w^+$, otherwise

Dependencies & Locality

Basic **dependencies** between events and variables:

- **Locality:** Events usually depend on a subset of variables only
	- Next-state relation can be defined over these **supporting** variables

 p_3

Dependencies & Locality

Basic **dependencies** between events and variables:

- **Locality:** Events usually depend on a subset of variables only
	- Next-state relation can be defined over these **supporting** variables

- **Saturation** is an algorithm for state space generation of PTSs
- **Exploits locality to recursively compute the least fixed point** $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
	- Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable

- **Saturation** is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
	- Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
	- Top(α) is the highest supporting variable in the encoding MDD

- **Saturation** is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
	- Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
	- Top(α) is the highest supporting variable in the encoding MDD

$$
\blacksquare \mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}
$$

 $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$

- **Saturation** is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
	- Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
	- Top(α) is the highest supporting variable in the encoding MDD
	- $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
	- $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- **Saturated MDD node** n:
	- \bullet $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where $k = \text{lvl}(n)$
	- Children of *n* are saturated (0 and 1 are saturated)
- Starting from a node *n* encoding $S(n) = S^0$
	- **Recursively saturate** children

- **Saturation** is an algorithm for state space generation of PTSs
- **Exploits locality to recursively compute the least fixed point** $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
	- Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
	- Top(α) is the highest supporting variable in the encoding MDD
	- $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
	- $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- **Saturated MDD node** n:
	- $\mathcal{S}(n) = S(n) \cup \mathcal{N}_k(S(n))$ where $k = \text{lvl}(n)$
	- Children of *n* are saturated (0 and 1 are saturated)
- Starting from a node *n* encoding $S(n) = S^0$
	- **Recursively saturate** children then compute fixed point

- **Saturation** is an algorithm for state space generation of PTSs
- Exploits locality to recursively compute the least fixed point $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
	- Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
	- Top(α) is the highest supporting variable in the encoding MDD
	- $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
	- $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- **Saturated MDD node** n:
	- \bullet $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where $k = \text{lvl}(n)$
	- Children of *n* are saturated (0 and 1 are saturated)
- Starting from a node *n* encoding $S(n) = S^0$
	- **Recursively saturate** children then compute fixed point

- **Saturation** is an algorithm for state space generation of PTSs
- **Exploits locality to recursively compute the least fixed point** $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
	- Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
	- Top(α) is the highest supporting variable in the encoding MDD
	- $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
	- $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- **Saturated MDD node** n:
	- \bullet $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where $k = \text{lvl}(n)$
	- Children of *n* are saturated (0 and 1 are saturated)
- Starting from a node *n* encoding $S(n) = S^0$
	- **Recursively saturate** children then compute fixed point

- **Saturation** is an algorithm for state space generation of PTSs
- **Exploits locality to recursively compute the least fixed point** $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
	- Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
	- Top(α) is the highest supporting variable in the encoding MDD
	- $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
	- $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- **Saturated MDD node** n:
	- \bullet $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where $k = \text{lvl}(n)$
	- Children of *n* are saturated (0 and 1 are saturated)
- Starting from a node *n* encoding $S(n) = S^0$
	- **Recursively saturate** children then compute fixed point

- **Saturation** is an algorithm for state space generation of PTSs
- **Exploits locality to recursively compute the least fixed point** $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
	- Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
	- Top(α) is the highest supporting variable in the encoding MDD
	- $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
	- $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- **Saturated MDD node** n:
	- \bullet $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where $k = \text{lvl}(n)$
	- Children of *n* are saturated (0 and 1 are saturated)
- Starting from a node *n* encoding $S(n) = S^0$
	- **Recursively saturate** children then compute fixed point

- **Saturation** is an algorithm for state space generation of PTSs
- **Exploits locality to recursively compute the least fixed point** $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
	- Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
	- Top(α) is the highest supporting variable in the encoding MDD
	- $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
	- $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- **Saturated MDD node** n:
	- \bullet $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where $k = \text{lvl}(n)$
	- Children of *n* are saturated (0 and 1 are saturated)
- Starting from a node *n* encoding $S(n) = S^0$
	- **Recursively saturate** children then compute fixed point

- **Saturation** is an algorithm for state space generation of PTSs
- **Exploits locality to recursively compute the least fixed point** $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
	- Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
	- Top(α) is the highest supporting variable in the encoding MDD

$$
\bullet \varepsilon_k = \{ \alpha \mid Top(\alpha) = k \}
$$

- $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- **Saturated MDD node** n:
	- \bullet $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where $k = \ell \nu l(n)$
	- Children of *n* are saturated (0 and 1 are saturated)
- Starting from a node *n* encoding $S(n) = S^0$
	- **Recursively saturate** children then compute fixed point

1

Cache hit!

- **Saturation** is an algorithm for state space generation of PTSs
- **Exploits locality to recursively compute the least fixed point** $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
	- Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
	- Top(α) is the highest supporting variable in the encoding MDD
	- $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
	- $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- **Saturated MDD node** n:
	- \bullet $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where $k = \text{lvl}(n)$
	- Children of *n* are saturated (0 and 1 are saturated)
- Starting from a node *n* encoding $S(n) = S^0$
	- **Recursively saturate** children then compute fixed point

- **Saturation** is an algorithm for state space generation of PTSs
- **Exploits locality to recursively compute the least fixed point** $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
	- Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
	- Top(α) is the highest supporting variable in the encoding MDD

$$
\bullet \varepsilon_k = \{ \alpha \mid Top(\alpha) = k \}
$$

- $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- **Saturated MDD node** n:
	- \bullet $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where $k = \ell \nu l(n)$
	- Children of *n* are saturated (0 and 1 are saturated)
- Starting from a node *n* encoding $S(n) = S^0$
	- **Recursively saturate** children then compute fixed point

1

Cache miss!

- **Saturation** is an algorithm for state space generation of PTSs
- **Exploits locality to recursively compute the least fixed point** $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
	- Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
	- Top(α) is the highest supporting variable in the encoding MDD
	- $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
	- $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- **Saturated MDD node** n:
	- \bullet $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where $k = \text{lvl}(n)$
	- Children of *n* are saturated (0 and 1 are saturated)
- Starting from a node *n* encoding $S(n) = S^0$
	- **Recursively saturate** children then compute fixed point

- **Saturation** is an algorithm for state space generation of PTSs
- **Exploits locality to recursively compute the least fixed point** $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
	- Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
	- Top(α) is the highest supporting variable in the encoding MDD
	- $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
	- $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- **Saturated MDD node** n:
	- \bullet $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where $k = \text{lvl}(n)$
	- Children of *n* are saturated (0 and 1 are saturated)
- Starting from a node *n* encoding $S(n) = S^0$
	- **Recursively saturate** children then compute fixed point

- **Saturation** is an algorithm for state space generation of PTSs
- **Exploits locality to recursively compute the least fixed point** $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
	- Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
	- Top(α) is the highest supporting variable in the encoding MDD
	- $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
	- $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- **Saturated MDD node** n:
	- \bullet $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where $k = \text{lvl}(n)$
	- Children of *n* are saturated (0 and 1 are saturated)
- Starting from a node *n* encoding $S(n) = S^0$
	- **Recursively saturate** children then compute fixed point

- **Saturation** is an algorithm for state space generation of PTSs
- **Exploits locality to recursively compute the least fixed point** $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
	- Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
	- Top(α) is the highest supporting variable in the encoding MDD
	- $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
	- $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- **Saturated MDD node** n :
	- \bullet $S(n) = S(n) \cup \mathcal{N}_k(S(n))$ where $k = \text{lvl}(n)$
	- Children of *n* are saturated (0 and 1 are saturated)
- Starting from a node *n* encoding $S(n) = S^0$
	- **Recursively saturate** children then compute fixed point

1

- **Saturation** is an algorithm for state space generation of PTSs
- **Exploits locality to recursively compute the least fixed point** $S = S \cup \mathcal{N}(S)$ such that $S^0 \subseteq S$
	- Equivalent to $S^0 \cup \mathcal{N}(S^0) \cup \mathcal{N}(\mathcal{N}(S^0)) \cup \cdots = \mathcal{N}^*(S^0)$
- Groups events based on the highest supporting variable
	- Top(α) is the highest supporting variable in the encoding MDD
	- $\mathcal{E}_k = \{ \alpha \mid Top(\alpha) = k \}$
	- $\mathcal{N}_k = \bigcup_{\alpha \in \mathcal{E}_k} \mathcal{N}_\alpha$
- **Saturated MDD node** n:
	- \bullet $S(n) = S(n) \cup N_k(S(n))$ where $k = \lfloor v \rfloor$
	- **Example 1** Children of *n* are saturated
- Starting from a node n encoding **Proof**
	- **Recursively saturate child**

Less intermediate nodes: better **performance**

In the final MDD:

only **saturated** nodes

1

Conditional Locality

Additional dependency class between events and variables:

Saturation exploits that independent variables **do not change** when firing

- **This might be true for supporting variables as well**
	- **Definitely true for read-only**
	- Conditionally true for conditionally read-only
- In other words...
	- If an event is conditionally local on a variable, then it can be **split** s.t. one part is **read-only** and the other is **read-write**

Conditional

locality

Enhanced Saturation

- Main idea:
	- Compute local fixed point with **conditionally local events**
	- **Remember** and **cache** the effect of higher (unaffected) variables
- **Advantages:**
	- **Example 2 Conditional Top values may be lower**
	- Conditionally saturated nodes are **more likely to be final**
- **Disadvantages:**
	- The effect of higher variables must be remembered
	- (main motivation of constrained saturation)
- **The With an ANSD representation** d:
	- \blacksquare $next(d, i, i)$ is the **conditionally local part** (read-only on this level)
		- And the resulting descriptor d' encodes the effect of i on the event!
		- We can fire this part on a lower level any number of times
	- **Figure 1** and $i \neq j$ is the part we have to fire on this level

Example

Assume a variable ordering (p_1, p_2, p_3)

HUNGARIAN

OF SCIENCES

ACADEMY

(日

5

Example

Assume a variable ordering (p_1, p_2, p_3)

JNGARIAN ACADEMY

OF SCIENCES

₹Θ

- For **saturation**
	- Everything except f_1 and f_2 must be fired on top level

Example

- Assume a variable ordering (p_1, p_2, p_3)
- For **saturation**
	- Everything except f_1 and f_2 must be fired on top level
- **For saturation with conditional locality**
	- 1_1 and l_2 can also be fired lower if enabled
	- (the fixed point iteration will not change p_2 and/or p_3)

Details and Discussion

- **Modified saturation algorithm:**
	- $Saturate(n)$ \rightarrow $Saturate(n, d)$ Computes saturated node
		- Saturate now has next-state relation as a parameter (represented by an ANSD)
	- SatRelProd(n, d) \rightarrow SatRelProd(n, d_{sat} , d_{fire}) \leftarrow
		- Relational product still gets next-state relation to fire $(d \rightarrow d_{fire})$ image of event
		- Plus the next-state relation to saturate with $(d_{sat}$, for conditionally local events)
		- Recursion: pass $next(d, j, j)$ for d_{sat} and $next(d, i, j)$ for d_{fire}
- A **generalization** of constrained saturation-based methods:
	- **Exents do not have to be partitioned anymore** (\mathcal{E}_k) **, this is automatic**
	- Contraints/priorities/synchronization can be **directly encoded** in the ANSD
- Overhead?
	- **Cache fragmentation because of multiple possible d parameters**
	- **T** Offset by **less MDD nodes** created during saturation
	- **Degrades to saturation** without (conditionally) read-only dependencies

Computes

Details and Discussion

- **Modified saturation algorithm:**
	- $Saturate(n)$ \rightarrow $Saturate(n, d)$ \rightarrow Computes saturated node
		- Saturate now has next-state relation as a parameter (represented by an ANSD)
	- SatRelProd(n, d) \rightarrow SatRelProd(n, d_{sat} , d_{fire}) \rightarrow
		- Relational product still gets next-state relation to fire $(d \rightarrow d_{fire})$ image of event
		- Plus the next-state relation to saturate with $(d_{sat}$, for conditionally local events)
		- Recursion: pass $next(d, j, j)$ for d_{sat} and $next(d, i, j)$ for d_{fire}
- A **generalization** of constrained saturation-based methods:
	- **Exents do not have to be partitioned anymore** (\mathcal{E}_k) **, this is automatic**
	- Contraints/priorities/synchronization can be **directly encoded** in the ANSD
- Overhead?

Cacher fragmentation because of multiple next-state relation parameters next-state relation parameters

Token count may either enable or disable transition, value is not used elsewhere \mathcal{C} and $\mathbf{0}$ (only two possible child descriptors: d' and $\mathbf{0}$)

Computes

- Implemented saturation (SA) and generalized saturation (GSA)
- **Models:** (almost) all 743 models from MCC (as of January 2019)
- **Variable orders:**
	- Generated with **sloan** algorithm (recommended by Amparore et al, 2018)

OF SCIENCES

- Implemented saturation (SA) and generalized saturation (GSA)
- **Models:** (almost) all 743 models from MCC (as of January 2019)
- **Variable orders:**
	- Generated with **sloan** algorithm (recommended by Amparore et al, 2018)

ACADEMY OF SCIENCES

- Implemented saturation (SA) and generalized saturation (GSA)
- **Models:** (almost) all 743 models from MCC (as of January 2019)
- **Variable orders:**
	- Generated with **sloan** algorithm (recommended by Amparore et al, 2018)
	- **Modified sloan** leaving out read-only dependencies

- Implemented saturation (SA) and generalized saturation (GSA)
- **Models:** (almost) all 743 models from MCC (as of January 2019)
- **Variable orders:**
	- Generated with **sloan** algorithm (recommended by Amparore et al, 2018)
	- **Modified sloan** leaving out read-only dependencies
- **Which** algorithm and which variable order?
	- Modified sloan vs. Sloan (MDD size, difference in 117 models)
		- Modified sloan **smaller MDD**: 69/117 **larger MDD**: 39/117
	- GSA with modified sloan vs. SA with sloan
		- GSA **>2x faster**: 78 models **>2x slower**: 16 models
- More research on (*variable ordering*, *algorithm*) pairs is needed

Summary

Saturation Enhanced with Conditional Locality

EXECONDER CONDUCALLY

- **Finer definition of event-variable dependencies**
- **Enhanced Saturation**
	- No need to partition next-state relation (done automatically)
	- Generalization of constrained saturation-based approaches
	- Enhanced saturation effect may lead to better performance

Application to Petri Nets

- **Evaluation** on models of the MCC
	- Degrades to saturation without conditional locality
	- **Often orders of magnitude faster**
	- **Virtually no overhead otherwise**

Future work: investigate more general models (e.g., statecharts)

