
V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Saturation Enhanced with Conditional Locality:
Application to Petri Nets

Vince Molnár1,2, István Majzik1

{molnarv,majzik}@mit.bme.hu

1 Budapest University of Technology and Economics | Department of Measurement and Information Systems | Fault Tolerant Systems Research Group
2 Hungarian Academy of Sciences | MTA-BME Lendület Research Group on Cyber-Physical Systems

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Introduction

 Model checking

 State space exploration

 Property analysis

 Symbolic model checking

 Characteristic function

 Decision diagrams

 Saturation algorithm

 In this paper…

 Conditional locality

 General representations

 Enhanced saturation effect

2

Lock

Free Free

Free

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Introduction

3

Lock

Free Free

Free

 Model checking

 State space exploration

 Property analysis

 Symbolic model checking

 Characteristic function

 Decision diagrams

 Saturation algorithm

 In this paper…

 Conditional locality

 General representations

 Enhanced saturation effect

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Introduction

4

Lock

Free Free

Free

 Model checking

 State space exploration

 Property analysis

 Symbolic model checking

 Characteristic function

 Decision diagrams

 Saturation algorithm

 In this paper…

 Conditional locality

 General representations

 Enhanced saturation effect

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Introduction

5

Lock

Free Free

Free

 Model checking

 State space exploration

 Property analysis

 Symbolic model checking

 Characteristic function

 Decision diagrams

 Saturation algorithm

 In this paper…

 Conditional locality

 General representations

 Enhanced saturation effect

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Introduction

6

Lock

Free Free

Free

 Model checking

 State space exploration

 Property analysis

 Symbolic model checking

 Characteristic function

 Decision diagrams

 Saturation algorithm

 In this paper…

 Conditional locality

 General representations

 Enhanced saturation effect

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Introduction

7

Lock

Free Free

Free

 Model checking

 State space exploration

 Property analysis

 Symbolic model checking

 Characteristic function

 Decision diagrams

 Saturation algorithm

 In this paper…

 Conditional locality

 General representations

 Enhanced saturation effect

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Partitioned Transition System

 Low-level formalism that preserves structure of high-level model

 A partitioned transition system (PTS) is a tuple 𝑉,𝐷, 𝑆0, ℰ,𝒩 s.t.:
 V is the set of variables

 𝐷 is the domain function (𝐷 𝑥𝑘 ⊆ ℕ for all 𝑥𝑘 ∈ 𝑉)

 𝑆0 ⊆ መ𝑆 is the set of initial states (መ𝑆 is the potential state space)

 ℰ is the set of high-level events

 𝒩 ⊆ መ𝑆 × መ𝑆 is the next-state relation (function),
partitioned by ℰ such that 𝒩 = 𝛼∈ℰ𝒩𝛼ڂ

 In Petri nets:

8

Lock

Free Free

Free

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Partitioned Transition System

 Low-level formalism that preserves structure of high-level model

 A partitioned transition system (PTS) is a tuple 𝑉,𝐷, 𝑆0, ℰ,𝒩 s.t.:
 V is the set of variables

 𝐷 is the domain function (𝐷 𝑥𝑘 ⊆ ℕ for all 𝑥𝑘 ∈ 𝑉)

 𝑆0 ⊆ መ𝑆 is the set of initial states (መ𝑆 is the potential state space)

 ℰ is the set of high-level events

 𝒩 ⊆ መ𝑆 × መ𝑆 is the next-state relation (function),
partitioned by ℰ such that 𝒩 = 𝛼∈ℰ𝒩𝛼ڂ

 In Petri nets:

 Variables are places (domain is ℕ)

9

Lock

Free Free

Free

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Partitioned Transition System

 Low-level formalism that preserves structure of high-level model

 A partitioned transition system (PTS) is a tuple 𝑉,𝐷, 𝑆0, ℰ,𝒩 s.t.:
 V is the set of variables

 𝐷 is the domain function (𝐷 𝑥𝑘 ⊆ ℕ for all 𝑥𝑘 ∈ 𝑉)

 𝑆0 ⊆ መ𝑆 is the set of initial states (መ𝑆 is the potential state space)

 ℰ is the set of high-level events

 𝒩 ⊆ መ𝑆 × መ𝑆 is the next-state relation (function),
partitioned by ℰ such that 𝒩 = 𝛼∈ℰ𝒩𝛼ڂ

 In Petri nets:

 Variables are places (domain is ℕ)

 Initial state is initial marking

10

Lock

Free Free

Free

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Partitioned Transition System

 Low-level formalism that preserves structure of high-level model

 A partitioned transition system (PTS) is a tuple 𝑉,𝐷, 𝑆0, ℰ,𝒩 s.t.:
 V is the set of variables

 𝐷 is the domain function (𝐷 𝑥𝑘 ⊆ ℕ for all 𝑥𝑘 ∈ 𝑉)

 𝑆0 ⊆ መ𝑆 is the set of initial states (መ𝑆 is the potential state space)

 ℰ is the set of high-level events

 𝒩 ⊆ መ𝑆 × መ𝑆 is the next-state relation (function),
partitioned by ℰ such that 𝒩 = 𝛼∈ℰ𝒩𝛼ڂ

 In Petri nets:

 Variables are places (domain is ℕ)

 Initial state is initial marking

 Events are transitions

11

Lock

Free Free

Free

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Partitioned Transition System

 Low-level formalism that preserves structure of high-level model

 A partitioned transition system (PTS) is a tuple 𝑉,𝐷, 𝑆0, ℰ,𝒩 s.t.:
 V is the set of variables

 𝐷 is the domain function (𝐷 𝑥𝑘 ⊆ ℕ for all 𝑥𝑘 ∈ 𝑉)

 𝑆0 ⊆ መ𝑆 is the set of initial states (መ𝑆 is the potential state space)

 ℰ is the set of high-level events

 𝒩 ⊆ መ𝑆 × መ𝑆 is the next-state relation (function),
partitioned by ℰ such that 𝒩 = 𝛼∈ℰ𝒩𝛼ڂ

 In Petri nets:

 Variables are places (domain is ℕ)

 Initial state is initial marking

 Events are transitions

 The next-state function is defined by
weighted (inhibitor) arcs

12

Lock

Free Free

Free

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Decision Diagrams

 Encoding sets: Quasi-reduced Ordered
Multi-valued Decision Diagrams (MDD)

 Nodes encode decisions (evaluation of a variable)

 Arcs encode outcomes (values of a variable)

 Terminal nodes encode result (0 or 1)

 Arcs leading to 0 are not drawn

 Ordered: same variable order on all paths

 Quasi-reduced: no 2 nodes with the same children

 Semantics:

 Each path from the root node to 1 encodes a tuple

 Components assume the values written on the arcs

13

n5

n4

n2

n3

1

n1

0 1

0 0

00

1

1

p3

p2

p1

𝑆 𝑛5 = { 0,0,0 , 1,0,0 ,
0,1,0 , 0,0,1 }

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Decision Diagrams

 Encoding sets: Quasi-reduced Ordered
Multi-valued Decision Diagrams (MDD)

 Nodes encode decisions (evaluation of a variable)

 Arcs encode outcomes (values of a variable)

 Terminal nodes encode result (0 or 1)

 Arcs leading to 0 are not drawn

 Ordered: same variable order on all paths

 Quasi-reduced: no 2 nodes with the same children

 Semantics:

 Each path from the root node to 1 encodes a tuple

 Components assume the values written on the arcs

 Efficient recursive operations

 Heavy caching

14

n5

n2

n4 n3

1

n1

0 1

0 0

00

1

1

p3

p2

p1

𝑆 𝑛5 = { 0,0,0 , 1,0,0 ,
0,1,0 , 0,0,1 }

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Abstract Next-State Descriptor (Marussy et al, PN’17)

 General description of MDD-like next-state representations

 An Abstract Next-State Descriptor (ANSD) is a tuple (𝒟, 𝑙𝑣𝑙, 𝑛𝑒𝑥𝑡):

 𝒟 is the set of descriptors (≈MDD nodes) incl. terminal empty and identity;

 𝑙𝑣𝑙 ∶ 𝒟 → ℕ is the level function (used to assign descriptors to variables);

 𝑛𝑒𝑥𝑡 ∶ 𝒟 × ℕ × ℕ → 𝒟 is the indexing function that computes a child
descriptor one level lower from a (source, target) index pair

 Can be regarded as a common interface for…

 Kroenecker matrices

15

1 2 …

1 +

2 +

… …

fr
o

m

to

1 2 …

1 +

2 +

… …

fr
o

m Lvl#1

Lvl#2

1

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Abstract Next-State Descriptor (Marussy et al, PN’17)

 General description of MDD-like next-state representations

 An Abstract Next-State Descriptor (ANSD) is a tuple (𝒟, 𝑙𝑣𝑙, 𝑛𝑒𝑥𝑡):

 𝒟 is the set of descriptors (≈MDD nodes) incl. terminal empty and identity;

 𝑙𝑣𝑙 ∶ 𝒟 → ℕ is the level function (used to assign descriptors to variables);

 𝑛𝑒𝑥𝑡 ∶ 𝒟 × ℕ × ℕ → 𝒟 is the indexing function that computes a child
descriptor one level lower from a (source, target) index pair

 Can be regarded as a common interface for…

 Kroenecker matrices, matrix diagrams

16

1 2 …

1 +

2 +

… …

fr
o

m

to

1 2 …

1 +

2 +

… …

fr
o

m Lvl#1

Lvl#2

1 2

1

2fr
o

m

to

1 2

1

2fr
o

m

to

1 2

1

2fr
o

m

to

1 1

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Abstract Next-State Descriptor (Marussy et al, PN’17)

 General description of MDD-like next-state representations

 An Abstract Next-State Descriptor (ANSD) is a tuple (𝒟, 𝑙𝑣𝑙, 𝑛𝑒𝑥𝑡):

 𝒟 is the set of descriptors (≈MDD nodes) incl. terminal empty and identity;

 𝑙𝑣𝑙 ∶ 𝒟 → ℕ is the level function (used to assign descriptors to variables);

 𝑛𝑒𝑥𝑡 ∶ 𝒟 × ℕ × ℕ → 𝒟 is the indexing function that computes a child
descriptor one level lower from a (source, target) index pair

 Can be regarded as a common interface for…

 Kroenecker matrices, matrix diagrams, MDDs with 2𝑘 levels, etc.

17

1 2 …

1 +

2 +

… …

fr
o

m

to

1 2 …

1 +

2 +

… …

fr
o

m Lvl#1

Lvl#2

1 2

1

2fr
o

m

to

1 2

1

2fr
o

m

to

1 1

0
00

1

0 1

0 01

0

0 1

0 01

1

#2

#2’

#1

#1’

1 2

1

2fr
o

m

to

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Abstract Next-State Descriptor (Marussy et al, PN’17)

 Very simple representation for Petri nets:

 Descriptors encode transition effect on a single place

 𝑑 = 〈𝑊− 𝑡, 𝑝 ,𝑊∘ 𝑡, 𝑝 ,𝑊+ 𝑡, 𝑝 , 𝑑′〉 (+terminal identity 1)

 𝑛𝑒𝑥𝑡 𝑑, 𝑖, 𝑗 = ቊ
𝑑′, 𝑤− ≤ 𝑖 < 𝑤∘ ∧ 𝑗 = 𝑖 − 𝑤− + 𝑤+

𝟎, otherwise

18

(0,1,1)

(0,1,0)

(0,1,0)

(0,1,1)

(0,1,0)

1

p3

p2

p1

Lock3 Lock2

Lock

Free Free

Free

p1

p3

p2

Lock2

Lock3 Lvl#2

Lvl#1

Lvl#3

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Abstract Next-State Descriptor (Marussy et al, PN’17)

 Very simple representation for Petri nets:

 Descriptors encode transition effect on a single place

 𝑑 = 〈𝑊− 𝑡, 𝑝 ,𝑊∘ 𝑡, 𝑝 ,𝑊+ 𝑡, 𝑝 , 𝑑′〉 (+terminal identity 1)

 𝑛𝑒𝑥𝑡 𝑑, 𝑖, 𝑗 = ቊ
𝑑′, 𝑤− ≤ 𝑖 < 𝑤∘ ∧ 𝑗 = 𝑖 − 𝑤− + 𝑤+

𝟎, otherwise

19

(0,1,1)

(0,1,0)

(0,1,0)

(0,1,1)

(0,1,0)

1

p3

p2

p1

Lock3 Lock2

Lock

Free Free

Free

p1

p3

p2

Lock3 Lvl#2

Lvl#1

Lvl#3

Lock2

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Abstract Next-State Descriptor (Marussy et al, PN’17)

 Very simple representation for Petri nets:

 Descriptors encode transition effect on a single place

 𝑑 = 〈𝑊− 𝑡, 𝑝 ,𝑊∘ 𝑡, 𝑝 ,𝑊+ 𝑡, 𝑝 , 𝑑′〉 (+terminal identity 1)

 𝑛𝑒𝑥𝑡 𝑑, 𝑖, 𝑗 = ቊ
𝑑′, 𝑤− ≤ 𝑖 < 𝑤∘ ∧ 𝑗 = 𝑖 − 𝑤− + 𝑤+

𝟎, otherwise

20

(0,1,1)

(0,1,0)

(0,1,0)

(0,1,1)

(0,1,0)

1

p3

p2

p1

Lock3 Lock2

Lock

Free Free

Free

p1

p3

p2

Lock3 Lvl#2

Lvl#1

Lvl#3

Lock2

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Dependencies & Locality

 Basic dependencies between events and variables:

 Locality: Events usually depend on a subset of variables only

 Next-state relation can be defined over these supporting variables

21

Locally invariant (‒) Locally read-only (r) Locally read-write (rw)

Value of variable does not
affect the outcome of event

Value of variable does not
change but affects outcome

Value of variable can be
changed by the event

Local

p1

p3

p2

f1

f2f3

l1

l2

l3

p1 p2 p3

l1 rw r r

l2 r rw r

l3 r r rw

f1 rw ‒ ‒

f2 ‒ rw ‒

f3 ‒ ‒ rw

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Dependencies & Locality

 Basic dependencies between events and variables:

 Locality: Events usually depend on a subset of variables only

 Next-state relation can be defined over these supporting variables

22

Locally invariant (‒) Locally read-only (r) Locally read-write (rw)

Value of variable does not
affect the outcome of event

Value of variable does not
change but affects outcome

Value of variable can be
changed by the event

Local

p1

p3

p2

f1

f2f3

l1

l2

l3

p1 p2 p3

l1 rw r r

l2 r rw r

l3 r r rw

f1 rw ‒ ‒

f2 ‒ rw ‒

f3 ‒ ‒ rw

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

23

p1 p2 p3

l1 rw r r

l2 r rw r

l3 r r rw

f1 rw ‒ ‒

f2 ‒ rw ‒

f3 ‒ ‒ rw

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

24

p1 p2 p3

l1 rw r r

l2 r rw r

l3 r r rw

f1 rw ‒ ‒

f2 ‒ rw ‒

f3 ‒ ‒ rw

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

25

p1 p2 p3

l1 rw r r

l2 r rw r

l3 r r rw

f1 rw ‒ ‒

f2 ‒ rw ‒

f3 ‒ ‒ rwℰ3

ℰ2

ℰ1

ℰ3

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children

26

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point

27

1

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point

28

1

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point

29

1

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point

30

1

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point

31

1

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point

32

1

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point

33

1

Cache hit!

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Saturation

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point

34

1

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Saturation

35

1

Cache miss!

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Saturation

36

1

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Saturation

37

1

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Saturation

38

1

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point

Saturation

39

1

In the final MDD:
only saturated nodes

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

 Saturation is an algorithm for state space generation of PTSs

 Exploits locality to recursively compute the least fixed point
𝑆 = 𝑆 ∪𝒩(𝑆) such that 𝑆0 ⊆ 𝑆

 Equivalent to 𝑆0 ∪𝒩 𝑆0 ∪𝒩 𝒩 𝑆0 ∪⋯ = 𝒩∗(𝑆0)

 Groups events based on the highest supporting variable

 𝑇𝑜𝑝(𝛼) is the highest supporting variable in the encoding MDD

 ℰ𝑘 = 𝛼 𝑇𝑜𝑝 𝛼 = 𝑘}

 𝒩𝑘 = 𝛼∈ℰ𝑘ڂ
𝒩𝛼

 Saturated MDD node 𝑛:

 𝑆 𝑛 = 𝑆(𝑛) ∪𝒩𝑘(𝑆(𝑛)) where 𝑘 = 𝑙𝑣𝑙(𝑛)

 Children of 𝑛 are saturated (0 and 1 are saturated)

 Starting from a node 𝑛 encoding 𝑆 𝑛 = 𝑆0

 Recursively saturate children then compute fixed point

Saturation

40

1

Less intermediate nodes:
better performance

In the final MDD:
only saturated nodes

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Enhancing Saturation with Conditional Locality

41

Locally invariant Locally read-only Locally read-write

Value of variable does not
affect the outcome of event

Value of variable does not
change but affects outcome

Value of variable can be
changed by the event

Local

Conditionally
Local

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Conditional Locality

 Additional dependency class between events and variables:

 Intuition:

 Saturation exploits that independent variables do not change when firing

 This might be true for supporting variables as well

 Definitely true for read-only

 Conditionally true for conditionally read-only

 In other words…

 If an event is conditionally local on a variable, then it can be split s.t.
one part is read-only and the other is read-write

42

Locally invariant Locally read-only Locally read-write

Value of variable does not
affect the outcome of event

Value of variable does not
change but affects outcome

Value of variable can be
changed by the event

Conditionally read-only

For some values of some variables (guard)
the event does not change the variable

Conditional
locality

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Enhanced Saturation

 Main idea:

 Compute local fixed point with conditionally local events

 Remember and cache the effect of higher (unaffected) variables

 Advantages:

 Conditional 𝑇𝑜𝑝 values may be lower

 Conditionally saturated nodes are more likely to be final

 Disadvantages:

 The effect of higher variables must be remembered

 (main motivation of constrained saturation)

 With an ANSD representation 𝑑:

 𝒏𝒆𝒙𝒕(𝒅, 𝒊, 𝒊) is the conditionally local part (read-only on this level)

 And the resulting descriptor 𝑑′ encodes the effect of 𝑖 on the event!

 We can fire this part on a lower level any number of times

 𝒏𝒆𝒙𝒕(𝒅, 𝒊, 𝒋) with 𝒊 ≠ 𝒋 is the part we have to fire on this level

43

1 2 …

1 +

2 +

… …

fr
o

m

to

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Example

 Assume a variable ordering (𝑝1, 𝑝2, 𝑝3)

44

p1 p2 p3

l1 rw r r

l2 r rw r

l3 r r rw

f1 rw ‒ ‒

f2 ‒ rw ‒

f3 ‒ ‒ rw

p1

p3

p2

f1

f2f3

l1

l2

l3

n2

n3

1

n1

0 1

0 0

00

1

1

p3

p2

p1

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Example

 Assume a variable ordering (𝑝1, 𝑝2, 𝑝3)

 For saturation

 Everything except 𝑓1 and 𝑓2 must be fired on top level

45

p1 p2 p3

l1 rw r r

l2 r rw r

l3 r r rw

f1 rw ‒ ‒

f2 ‒ rw ‒

f3 ‒ ‒ rw

p1

p3

p2

f1

f2f3

l1

l2

l3

n2

n3

1

n1

0 1

0 0

00

1

1

p3

p2

p1

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Example

 Assume a variable ordering (𝑝1, 𝑝2, 𝑝3)

 For saturation

 Everything except 𝑓1 and 𝑓2 must be fired on top level

 For saturation with conditional locality

 𝑙1 and 𝑙2 can also be fired lower if enabled

 (the fixed point iteration will not change 𝑝2 and/or 𝑝3)

46

p1 p2 p3

l1 rw r r

l2 r rw r

l3 r r rw

f1 rw ‒ ‒

f2 ‒ rw ‒

f3 ‒ ‒ rw

p1

p3

p2

f1

f2f3

l1

l2

l3

n2

n3

1

n1

0 1

0 0

00

1

1

p3

p2

p1

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Details and Discussion

 Modified saturation algorithm:

 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒 𝑛 → 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒(𝑛, 𝒅)

 Saturate now has next-state relation as a parameter (represented by an ANSD)

 𝑆𝑎𝑡𝑅𝑒𝑙𝑃𝑟𝑜𝑑 𝑛, 𝑑 → 𝑆𝑎𝑡𝑅𝑒𝑙𝑃𝑟𝑜𝑑 𝑛, 𝒅𝒔𝒂𝒕, 𝒅𝒇𝒊𝒓𝒆
 Relational product still gets next-state relation to fire (𝑑 → 𝒅𝒇𝒊𝒓𝒆)

 Plus the next-state relation to saturate with (𝒅𝒔𝒂𝒕, for conditionally local events)

 Recursion: pass 𝒏𝒆𝒙𝒕(𝒅, 𝒋, 𝒋) for 𝒅𝒔𝒂𝒕 and 𝒏𝒆𝒙𝒕(𝒅, 𝒊, 𝒋) for 𝒅𝒇𝒊𝒓𝒆

 A generalization of constrained saturation-based methods:

 Events do not have to be partitioned anymore (ℰ𝑘), this is automatic

 Contraints/priorities/synchronization can be directly encoded in the ANSD

 Overhead?

 Cache fragmentation because of multiple possible 𝒅 parameters

 Offset by less MDD nodes created during saturation

 Degrades to saturation without (conditionally) read-only dependencies

47

Computes saturated node

Computes
image of event

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Details and Discussion

 Modified saturation algorithm:

 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒 𝑛 → 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒(𝑛, 𝒅)

 Saturate now has next-state relation as a parameter (represented by an ANSD)

 𝑆𝑎𝑡𝑅𝑒𝑙𝑃𝑟𝑜𝑑 𝑛, 𝑑 → 𝑆𝑎𝑡𝑅𝑒𝑙𝑃𝑟𝑜𝑑 𝑛, 𝒅𝒔𝒂𝒕, 𝒅𝒇𝒊𝒓𝒆
 Relational product still gets next-state relation to fire (𝑑 → 𝒅𝒇𝒊𝒓𝒆)

 Plus the next-state relation to saturate with (𝒅𝒔𝒂𝒕, for conditionally local events)

 Recursion: pass 𝒏𝒆𝒙𝒕(𝒅, 𝒋, 𝒋) for 𝒅𝒔𝒂𝒕 and 𝒏𝒆𝒙𝒕(𝒅, 𝒊, 𝒋) for 𝒅𝒇𝒊𝒓𝒆

 A generalization of constrained saturation-based methods:

 Events do not have to be partitioned anymore (ℰ𝑘), this is automatic

 Contraints/priorities/synchronization can be directly encoded in the ANSD

 Overhead?

 Cache fragmentation because of multiple next-state relation parameters

 Offset by less MDD nodes created during saturation

 Degrades to saturation without (conditionally) read-only dependencies

48

No real overhead expected for Petri nets
Token count may either enable or disable transition, value is not used elsewhere

(only two possible child descriptors: 𝑑′ and 0)

Computes
image of event

Computes saturated node

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Empirical Evaluation

 Implemented saturation (SA) and generalized saturation (GSA)

 Models: (almost) all 743 models from MCC (as of January 2019)

 Variable orders:

 Generated with sloan algorithm (recommended by Amparore et al, 2018)

49

R
u

n
n

in
g

ti
m

e

To
ta

l #
 o

f
M

D
D

 n
o

d
es

cr
e

at
e

d

>2x faster
(53/274 cases)

No overhead
otherwise

Degrades to
saturation ≤ MDD nodes created

in every case

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Empirical Evaluation

 Implemented saturation (SA) and generalized saturation (GSA)

 Models: (almost) all 743 models from MCC (as of January 2019)

 Variable orders:

 Generated with sloan algorithm (recommended by Amparore et al, 2018)

50

R
u

n
n

in
g

ti
m

e

To
ta

l #
 o

f
M

D
D

 n
o

d
es

cr
e

at
e

d

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Empirical Evaluation

 Implemented saturation (SA) and generalized saturation (GSA)

 Models: (almost) all 743 models from MCC (as of January 2019)

 Variable orders:

 Generated with sloan algorithm (recommended by Amparore et al, 2018)

 Modified sloan leaving out read-only dependencies

51

R
u

n
n

in
g

ti
m

e

To
ta

l #
 o

f
M

D
D

 n
o

d
es

cr
e

at
e

d

>2x faster
(69/298 cases)

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Empirical Evaluation

 Implemented saturation (SA) and generalized saturation (GSA)

 Models: (almost) all 743 models from MCC (as of January 2019)

 Variable orders:

 Generated with sloan algorithm (recommended by Amparore et al, 2018)

 Modified sloan leaving out read-only dependencies

 Which algorithm and which variable order?

 Modified sloan vs. Sloan (MDD size, difference in 117 models)

 Modified sloan smaller MDD: 69/117 larger MDD: 39/117

 GSA with modified sloan vs. SA with sloan

 GSA >2x faster: 78 models >2x slower: 16 models

 More research on (variable ordering, algorithm) pairs is needed

52

V. Molnár, I. Majzik: Saturation Enhanced with Conditional
Locality: Application to Petri Nets, PN’19, June 27.

Summary

Saturation Enhanced with Conditional Locality

 Conditional Locality

 Finer definition of event-variable dependencies

 Enhanced Saturation

 No need to partition next-state relation (done automatically)

 Generalization of constrained saturation-based approaches

 Enhanced saturation effect may lead to better performance

Application to Petri Nets

 Evaluation on models of the MCC

 Degrades to saturation without conditional locality

 Often orders of magnitude faster

 Virtually no overhead otherwise

Future work: investigate more general models (e.g., statecharts)

53

