Stochastic Evaluation of Large Interdependent Composed Models Through Kronecker Algebra and Exponential Sums

G. Masetti, L. Robol, S. Chiaradonna and F. Di Giandomenico

ISTI-CNR Pisa, University of Pisa

 Ω

Presentation outline

- Context (state of the art)
- Focus of the analysis and KAES methodology
- Case study and numerical evaluation
- Conclusions and future work

(□) ()

Focus of the analysis

- Stochastic Petri Nets context
- Irreducible CTMCs
- CTMCs with absorbing states

∢ ロ ▶ ィ 何

∋ »

Focus of the analysis

- Stochastic Petri Nets context
- Irreducible CTMCs
- CTMCs with absorbing states
	- Definition of reward structure is crucial
	- System comprising a large number of weakly interdependent components
- Goal 1: extend the class of systems for which Mean Time To Absorption can be evaluated
- Goal 2: safe evaluation of MTTA (lower bound)
- Goal 3: foresee a road map to evaluate also transient measures

 209

イロト イ押ト イヨト イヨト

Structure of this presentation

- List of problems we encountered when adapting techniques for the evaluation of
	- steady-state probability vector (irreducible CTMCs)
	- transient measures (relatively small CTMCs)
	- to the solution of CTMCs with absorbing states
- Often solving a given problem produces a new set of problems
- For each problem I will discuss the proposed solution, observing that a complete comparison among available solutions is out of the paper scope

 Ω

イロト イ押ト イヨト イヨト

Context

∍ [KAES methodology](#page-0-0) June, 2019 5/28

÷.

 299

メロトメ 倒す メミトメモ

◆ロト→同

÷.

 \sim \rightarrow \mathcal{A} ∍

B (ISTI-CNR & Univ.Pisa) [KAES methodology](#page-0-0) June, 2019 6/28

finite state space S

infinitesimal generator $Q \in \mathbb{R}^{|S| \times |S|}$

4 0 8 4

finite state space S

infinitesimal generator $Q \in \mathbb{R}^{|S| \times |S|}$

4 0 8 4

4. 医下降

[KAES methodology](#page-0-0) June, 2019 7/28

E

 299

メロトメ 御 トメ 君 トメ 君 ト

. p

 299

. p

 299

$$
\begin{array}{c}\n\left(s_1^1 = (1,0) \atop s_2^1 = (0,1)\right) \\
\left(s_2^2 = (0,1) \atop s_2^2 = (0,1)\right)\n\end{array}
$$

. p

 299

メロトメ 倒す メミトメモ

 2990

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 2990

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[Context](#page-6-0) [Kronecker representation irreducible CTMCs](#page-11-0)

Descriptor matrix

Descriptor vectors

- Recent development: compress both Q and π exploiting the Kronecker structure
	- Kressner, 2014: Tensor-Trains
	- Buchholz, 2017: Hierarchical Tucker Decomposition
- We followed Kressner

$$
\mathcal{A}_{i_1...i_d} = \underbrace{G_1[i_1]}_{1\times r} \underbrace{G_2[i_2]}_{r\times r} \cdots \underbrace{G_d[i_d]}_{r\times 1}
$$

An example of computing one element of 4-dimensional tensor:

- Standard iterative methods to evaluate π fail because in $\pi^{k+1} = \pi^k + \delta \pi^k$
the TT ranks can grow too quickly the TT-ranks can grow too quickly
- Thus, ad hoc solution methods have been designed

 209

イロト イ押 トイヨ トイヨト

(ISTI-CNR & Univ.Pisa) [KAES methodology](#page-0-0) June, 2019 9/28

 \leftarrow \Box \rightarrow \leftarrow \Box

Focus of the analysis

4 0 8 4

Problems identification

Shifting *Q* to obtain an irreducible CTMC as

$$
\left[\begin{array}{c|c}\n\hat{Q} & \hat{V}_1 \\
\vdots & \vdots \\
\hline\n0 & 0 & \dots & 0 & 0\n\end{array}\right] + \left[\begin{array}{c|c}\n\hline\n\end{array}\right] - 1
$$

assuming $(\pi_0)_i \neq 0$ only for $i = 1$, introduces many difficulties

- If *Q* has a nice TT decomposition it is not guaranteed that \hat{Q} has a nice TT decomposition too
- Even a good compression (small TT-ranks) for *Q*ˆ does not guarantee a good compression for the vectors involved in iterative solution methods

 209

イロト イ押 トイヨ トイヨト

Proposed solutions and new problems (I)

Proposed solution:

Define the new shift *Q* − *S* as

$$
\left[\begin{array}{c|c} & v_1 \\ \hat{Q} & \vdots \\ \hline v_{N-1} & 0 \end{array}\right] - \left[\begin{array}{c|c} & v_1 \\ \hline & \vdots \\ \hline & v_{N-1} \\ \hline & -1 \end{array}\right]
$$

- *Q* − *S* and *Q* have the same Kronecker structure and the TT-ranks of *S* are $(1, 1, \ldots, 1)$
- We can solve the system with *Q* − *S* because

$$
MTTA = -\hat{\pi}_0 \hat{Q}^{-1} \mathbb{1}^T = -\pi_0 (Q - S)^{-1} r^T,
$$

provided that $(\pi_0)_N = 0$

Problem:

The methods studied by Kressner and Buchholz do not work for *Q* − *S* because the TT-ranks grow too much anyway **KO F K @ F K B F K** QQQ

(ISTI-CNR & Univ.Pisa) [KAES methodology](#page-0-0) June, 2019 12/28

Proposed solutions and new problems (II)

Proposed solution:

• Define a new split $Q = Q_1 + Q_2$ such that

$$
Q - S = Q_1 + Q_2 - S = \underbrace{R + \Delta'}_{Q_1} + \underbrace{W + \Delta - \Delta'}_{Q_2} - S
$$

$$
= Q_1 \Big(I + Q_1^{-1} (Q_2 - S) \Big) = Q_1 \Big(I - M \Big)
$$

where $M = -Q_1^{-1}(Q_2 - S)$ and ∆' is a suitable Kronecker sum of diagonal matrices (details in the paper)

• Exploit the Neumann series

$$
(Q-S)^{-1} = (I-M)^{-1}Q_1^{-1} = Q_1^{-1} + MQ_1^{-1} + M^2Q_1^{-1} + M^3Q_1^{-1} + ... = \sum_{j=0}^{\infty} M^jQ_1^{-1}
$$

Problem:

• Is this a convergent series?

 Ω

イロト イ押ト イヨト イヨト

Proposed solutions and new problems (III)

Proposed solution:

Of course it is a convergent series (Theorem in the paper) because the spectral radious of *M*, called $\rho(M)$, is strictly less than 1

Problem:

Is the inversion of *Q*¹ computationally cheaper than inverting *Q* − *S*?

Proposed solution:

• Consider the exponential sums approximation

$$
\frac{1}{x} \approx \sum_{j=1}^{\ell} \alpha_j e^{-\beta_j x},
$$

which has a controlled error bound on $[1,+\infty)$

Exploit the matrix exponential $e^{Q_1} = I + \frac{1}{2}Q_1^2 + \frac{1}{6}Q_1^3 + \dots$

Exploit th[e](#page-29-0) property $e^{Q_1^1 \oplus \cdots \oplus Q_l^n} = e^{Q_1^1} \otimes \ldots \otimes e^{Q_l^n}$ $e^{Q_1^1 \oplus \cdots \oplus Q_l^n} = e^{Q_1^1} \otimes \ldots \otimes e^{Q_l^n}$ $e^{Q_1^1 \oplus \cdots \oplus Q_l^n} = e^{Q_1^1} \otimes \ldots \otimes e^{Q_l^n}$

 QQQ

Putting all together

• The core of the computation is

$$
MTTA = -\pi_0 (Q - S)^{-1} r^T \approx -\pi_0 x^k, \text{ where } \begin{cases} x^0 &= Q_1^{-1} r^T \\ x^{k+1} &= x^k + M x^k \end{cases}
$$

• The matrix-vector product is evaluated through

$$
Mx = -Q_1^{-1}(Q_2 - S)x = -(Q_1^1 \oplus \cdots \oplus Q_1^n)^{-1}(\Delta - \Delta' + W - S)x \approx
$$

$$
\approx \sum_{j=1}^{\ell} \alpha_j \left(e^{\beta_j (R^1 + \Delta'_1)} \otimes \ldots \otimes e^{\beta_j (R^n + \Delta'_n)} \right) (\Delta - \Delta' + W - S)x,
$$

where all the matrices and *x* are in TT format.

(ISTI-CNR & Univ.Pisa) [KAES methodology](#page-0-0) June, 2019 15/28

イロト イ押 トイヨ トイヨ

 QQQ

Safe approximation

Remark

Notice that, defining $z^{k+1} = Q_1^{-1}(Q_2 - S)z^k$ *and* $z^0 = Q_1^{-1}(\mathbb{1} - e_N^TQ_1^{-1}\mathbb{1} \cdot e_N)$, *we obtain*

$$
MTTA = -\pi_0^T \cdot z^k + O(\rho(M)^{k+1}),
$$

where $z^{k+1} \geq z^k$ *for all* $k = 0, 1, \ldots$ *because* $e_N^T z^0 = 0$ *and both* Q_1^{-1} *and* Q_2 *are non-negative matrices are non-negative matrices.*

This means that the MTTA can be computed in a safe way, being the approximation $-\pi_0^T \cdot z^k$ a <u>lower bound</u>

 209

イロト イ押 トイヨ トイヨ

computations saving and acceleration techniques

Instead of implementing *Mx* we can work with *M^T* exploiting the fact that

- from a state in S we cannot reach a state in $PS \setminus S$
- from a state in $PS \setminus S$ we can reach a state in S
- Consider the following series

$$
(I - M)^{-1} = (I + M)(I + M^2) \cdots (I + M^{2^k}) \cdots
$$

it is equivalent to the Neumann series, but converges quadratically

• Here we have to implement the matrix-matrix product instead of the matrix-vector product, and the TT-ranks can grow quickly

 Ω

イロト イ押 トイヨ トイヨ

Case study

(ISTI-CNR & Univ.Pisa) [KAES methodology](#page-0-0) June, 2019 18/28

4 0 8 4 同 ∍

4 単 8

× ≃

B

GSPN for *Cⁱ*

The failure of *C*_{*i*} can impact on $C_{j_1}, \ldots, C_{j_{\delta_j}}$

 299

メロトメ 御 トメ ミトメ ミト

Evaluation results

4 0 8 4

Э×

 QQ

- • Consider $n = 10, 20, ..., 50$
- Number of potential states: $|PS| = 3^n$
- Topology of interactions is obtained as follows:
	- a star topology is constructed, where, labeling the nodes from 1 to *n*, there exist $n - 1$ edges connecting 1 to *j*, for $j = 2, \ldots, n$
	- for each node with index greater than 1, another edge connecting it to a random node is added with probability ⁰.²

Such topologies are good representatives of topologies addressed by KAES: large number of components, loosely interconnected

The remaining parameters are chosen at random within the following intervals

 $\lambda_i \in [0.5, 1.5], \quad \mu_i \in [2000, 3000], \quad p \in [0.95, 1],$

so that there are 4 orders of magnitude among the parameters. The tests have been repeated 100 times for each value of *n*, using the randomized topology described above

(ISTI-CNR & Univ.Pisa) [KAES methodology](#page-0-0) June, 2019 21/28

KOD KARD KED KED E VOQO

Table: Potential spaces dimensions, memory consumption, time and number of cases where the KAES approach was successful, where μ reports the average over the 100 runs and σ is the standard deviation.

 2990

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Figure: Evolution of the effective ranks, representing an average of the TT-ranks of the carriages, for each iteration of KAES, with $n = 20$ and a specific topology.

4 0 8 4

(ISTI-CNR & Univ.Pisa) [KAES methodology](#page-0-0) June, 2019 23 / 28

 QQ

Conclusions and future work

(ISTI-CNR & Univ.Pisa) [KAES methodology](#page-0-0) June, 2019 24/28

4 D F

 Ω

Conclusions

- Analytical modeling of large, interconnected systems by developing a new numerical evaluation approach called KAES
- Focus on Mean Time To Absorption
- Symbolic representation of both the descriptor matrix and the descriptor vector to mitigate the state space explosion
- Although symbolic representation has been already applied in existing studies, such previous works focus on steady-state analysis
- KAES targets limiting analysis in presence of absorbing states
- The way MTTA is computed guarantees a safe assessment, which is relevant when dealing with dependability critical applications
- We started a numerical evaluation campaign, where the presented case study is the first step

 Ω

メロトメ 御 トメ ミトメ ミト

Future work

- More experiments are needed to better understand strengths and limitations of this new technique
- A deeper understanding of the link between TT-ranks and the topology of interactions among system components would be desirable
- The powerfulness of the adopted techniques make this method not restricted to the evaluation of MTTA only, but adaptable to evaluate general performability related indicators
- We are working on a general treatment of reward vectors to allow the modeler to define them at SGSPN level maintaining both the Kronecker structure and a good compression

 209

イロト イ押 トイヨ トイヨ ト

Future work

- We have recently published a new way of interpreting performability measures in terms of matrix functions
- **■** Being able to evaluate efficiently *f*(\tilde{Q} − *S*) where

$$
f(z) = \begin{cases} \frac{1}{z} & \text{if } z \neq 0, \\ 0 & \text{otherwise,} \end{cases}
$$

is the first step to evaluate transient measures that can be expressed through

$$
\varphi_j(z) = \begin{cases} \frac{\varphi_{j-1}(z)-1}{z} & \text{if } j > 1, \\ \frac{e^z-1}{z} & \text{if } j = 1. \end{cases}
$$

 209

イロト イ押 トイヨ トイヨ

Thank you Questions?

∢ ロ ▶ ィ 何

 \rightarrow \Rightarrow \rightarrow

 \sim

E

×.

э