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Presentation outline

Context (state of the art)
Focus of the analysis and KAES methodology
Case study and numerical evaluation
Conclusions and future work
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Focus of the analysis

Stochastic Petri Nets context
Irreducible CTMCs
CTMCs with absorbing states

Definition of reward structure is crucial
System comprising a large number of weakly interdependent
components

Goal 1: extend the class of systems for which Mean Time To
Absorption can be evaluated
Goal 2: safe evaluation of MTTA (lower bound)
Goal 3: foresee a road map to evaluate also transient measures
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Structure of this presentation

List of problems we encountered when adapting techniques for the
evaluation of

steady-state probability vector (irreducible CTMCs)
transient measures (relatively small CTMCs)

to the solution of CTMCs with absorbing states
Often solving a given problem produces a new set of problems
For each problem I will discuss the proposed solution, observing that a
complete comparison among available solutions is out of the paper scope
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Context
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Context

Stochastic
Petri Net

CTMC

Reachability graph

Superimposed
GSPN

Stochastic
Automata Network

CTMC

finite state space S

infinitesimal generator Q ∈ R |S |×|S |

small state spaces S(1), . . . ,S(n)

potential states PS = S(1) × · · · × S(n)

infinitesimal generator Q ∈ R |PS |×|PS |

Lumping, MDD, Kronecker, Reachable
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Context Kronecker representation irreducible CTMCs
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Context Tensor Trains compressed format

Descriptor vectors

Recent development: compress both Q and π exploiting the Kronecker
structure

Kressner, 2014: Tensor-Trains
Buchholz, 2017: Hierarchical Tucker Decomposition

We followed Kressner

Standard iterative methods to evaluate π fail because in πk+1 = πk + δπk

the TT-ranks can grow too quickly
Thus, ad hoc solution methods have been designed
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Context CTMCs with absorbing states
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Focus of the analysis
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Focus of the analysis

Problems identification

Shifting Q to obtain an irreducible CTMC as
v1

Q̂
...

vN−1
0 0 . . . 0 0


+

 1 −1


assuming (π0)i , 0 only for i = 1, introduces many difficulties
If Q has a nice TT decomposition it is not guaranteed that Q̂ has a nice
TT decomposition too
Even a good compression (small TT-ranks) for Q̂ does not guarantee a
good compression for the vectors involved in iterative solution methods
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Focus of the analysis

Proposed solutions and new problems (I)
Proposed solution:

Define the new shift Q − S as
v1

Q̂
...

vN−1
0 0 . . . 0 0


−


v1
...

vN−1
−1


Q − S and Q have the same Kronecker structure and the TT-ranks of S
are (1,1, . . . ,1)
We can solve the system with Q − S because

MTTA = −π̂0Q̂−1
1

T = −π0(Q − S)−1rT ,

provided that (π0)N = 0
Problem:

The methods studied by Kressner and Buchholz do not work for Q − S
because the TT-ranks grow too much anyway
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Focus of the analysis

Proposed solutions and new problems (II)
Proposed solution:

Define a new split Q = Q1 + Q2 such that

Q − S = Q1 + Q2 − S = R + ∆′︸ ︷︷ ︸
Q1

+W + ∆ − ∆′︸        ︷︷        ︸
Q2

−S

= Q1

(
I + Q−1

1 (Q2 − S)
)
= Q1

(
I −M

)
where M = −Q−1

1 (Q2 − S) and ∆′ is a suitable Kronecker sum of diagonal
matrices (details in the paper)
Exploit the Neumann series

(Q−S)−1 = (I−M)−1Q−1
1 = Q−1

1 +MQ−1
1 +M2Q−1

1 +M3Q−1
1 +. . . =

∞∑
j=0

M jQ−1
1

Problem:
Is this a convergent series?
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Focus of the analysis

Proposed solutions and new problems (III)
Proposed solution:

Of course it is a convergent series (Theorem in the paper) because the
spectral radious of M, called ρ(M), is strictly less than 1

Problem:
Is the inversion of Q1 computationally cheaper than inverting Q − S?

Proposed solution:
Consider the exponential sums approximation

1
x
≈

∑̀
j=1

αje−βjx,

which has a controlled error bound on [1,+∞)
Exploit the matrix exponential eQ1 = I + 1

2 Q2
1 +

1
6 Q3

1 + . . .

Exploit the property eQ1
1⊕···⊕Qn

1 = eQ1
1 ⊗ . . . ⊗ eQn

1
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Focus of the analysis

Putting all together

The core of the computation is

MTTA = −π0(Q − S)−1rT ≈ −π0xk, where

{
x0 = Q−1

1 rT

xk+1 = xk +Mxk

The matrix-vector product is evaluated through

Mx = −Q−1
1 (Q2 − S)x = −(Q1

1 ⊕ · · · ⊕ Qn
1)
−1(∆ − ∆′ +W − S)x ≈

≈
∑̀
j=1

αj

(
eβj (R1+∆′1) ⊗ . . . ⊗ eβj (Rn+∆′n)

) (
∆ − ∆′ +W − S

)
x,

where all the matrices and x are in TT format.
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Focus of the analysis

Safe approximation

Remark
Notice that, defining zk+1 = Q−1

1 (Q2 − S)zk and z0 = Q−1
1 (1 − eT

NQ−1
1 1 · eN),

we obtain
MTTA = −πT

0 · z
k + O(ρ(M)k+1),

where zk+1 ≥ zk for all k = 0,1, . . . because eT
Nz0 = 0 and both Q−1

1 and Q2
are non-negative matrices.

This means that the MTTA can be computed in a safe way, being the
approximation −πT

0 · z
k a lower bound
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Focus of the analysis

computations saving and acceleration techniques

Instead of implementing Mx we can work with MT exploiting the fact that
from a state in S we cannot reach a state in PS \ S
from a state in PS \ S we can reach a state in S

Consider the following series

(I −M)−1 = (I +M)(I +M2) · · · (I +M2k
) · · ·

it is equivalent to the Neumann series, but converges quadratically
Here we have to implement the matrix-matrix product instead of the
matrix-vector product, and the TT-ranks can grow quickly
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Case study
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Case study

GSPN for Ci

Oni DowniFi

TDowni

pi · λi

TOni

µi

TFaili

(1− pi) · λi

TFailj1

(1− pj1) · λj1
#Downi

TFailjδi

(1− pjδi ) · λjδi

#Downi

...

#Oni

#Oni

The failure of Ci can impact on Cj1, . . . ,Cjδi
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Evaluation results
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Evaluation results

Consider n = 10,20, . . . ,50
Number of potential states: |PS| = 3n

Topology of interactions is obtained as follows:
a star topology is constructed, where, labeling the nodes from 1 to n, there
exist n − 1 edges connecting 1 to j, for j = 2, . . . ,n
for each node with index greater than 1, another edge connecting it to a
random node is added with probability 0.2

Such topologies are good representatives of topologies addressed by
KAES: large number of components, loosely interconnected
The remaining parameters are chosen at random within the following
intervals

λi ∈ [0.5,1.5], µi ∈ [2000,3000], p ∈ [0.95,1],

so that there are 4 orders of magnitude among the parameters. The tests
have been repeated 100 times for each value of n, using the randomized
topology described above
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Evaluation results

Table: Potential spaces dimensions, memory consumption, time and number of cases
where the KAES approach was successful, where µ reports the average over the 100
runs and σ is the standard deviation.

n |PS| memory (Gb) time (s) % solved
µ σ µ σ cases

10 59049 0.90 0.08 1.17 0.81 100%
20 3.49 · 109 3.07 9.68 65.83 346.24 100%
30 2.06 · 1014 8.31 19.40 193.29 619.63 91%
40 1.22 · 1019 4.42 9.97 140.89 477.67 91%
50 7.18 · 1023 7.79 17.27 299.44 840.78 84%
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Evaluation results
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Figure: Evolution of the effective ranks, representing an average of the TT-ranks of
the carriages, for each iteration of KAES, with n = 20 and a specific topology.
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Conclusions
and future work
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Conclusions

Analytical modeling of large, interconnected systems by developing a
new numerical evaluation approach called KAES
Focus on Mean Time To Absorption
Symbolic representation of both the descriptor matrix and the descriptor
vector to mitigate the state space explosion
Although symbolic representation has been already applied in existing
studies, such previous works focus on steady-state analysis
KAES targets limiting analysis in presence of absorbing states
The way MTTA is computed guarantees a safe assessment, which is
relevant when dealing with dependability critical applications
We started a numerical evaluation campaign, where the presented case
study is the first step
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Future work

More experiments are needed to better understand strengths and
limitations of this new technique
A deeper understanding of the link between TT-ranks and the topology of
interactions among system components would be desirable
The powerfulness of the adopted techniques make this method not
restricted to the evaluation of MTTA only, but adaptable to evaluate
general performability related indicators
We are working on a general treatment of reward vectors to allow the
modeler to define them at SGSPN level maintaining both the Kronecker
structure and a good compression
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Future work

We have recently published a new way of interpreting performability
measures in terms of matrix functions
Being able to evaluate efficiently f (Q̃ − S) where

f (z) =

{
1
z if z , 0,
0 otherwise,

is the first step to evaluate transient measures that can be expressed
through

ϕj(z) =

{
ϕj−1(z)−1

z if j > 1,
ez−1

z if j = 1.
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Thank you
Questions?
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