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Computational Tree logic (CTL)

φ ::= T | F | FIREABLE | DEADLOCK | 𝜌
| ¬φ | φ ∧ φ | φ ∨ φ | φ ⟶ φ 
| AX φ | EX φ 
| AF φ | EF φ 
| AG φ | EG φ 
| A (φ U φ) | E (φ U φ) 

Path quantifier
A: inevitably (along all paths) 
E: possibly (there exists a path) 

Temporal operators
G: globally (always)
F: in future (eventually) 
X: neXt state
U: untilTaking Some Burden off an 
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Linear Time Logic (LTL)

φ ::= T | F | FIREABLE | DEADLOCK | 𝜌
| ¬φ | φ ∧ φ | φ ∨ φ | φ ⟶ φ 
| X φ | F φ | G φ | (φ U φ) 

Similar to CTL but path quantifiers are not used.

LTL: linear time CTL: branching time
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LoLA’s performance at the MCC
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Upper bounds
over 80 %

Reachability
over 90 %

LTL
over 85 %

CTL
only 65 %
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CTL performs worse than the rest:
LoLA’s performance at the MCC

6

Upper bounds
over 80 %

Reachability
over 90 %

LTL
over 85 %

CTL
only 65 %
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Simple and frequently occurring 
formulas
Many CTL queries have a rather simple 
structure – only few temporal operators
• In the MCC this could be an artefact of the 

randomised formula generating mechanism 
• Share same experience with LoLA users

Goal Find for each formula 
an optimized algorithm

Taking Some Burden off an 
Explicit CTL Model Checker

Torsten Liebke (Rostock) 7



Systematic approach

• Most approaches we’re using are well known
• Combining them in a systematic way, to push 

the limits further 

Building a uniformly picture
Þ Especially for stubborn sets
Þ Pre-processing
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Partial order reduction:
The stubborn set method
Given: Petri net N = [P,T,F,W,m0] and property φ
Goal: produce subgraph of the reachability graph
Condition: evaluation of φ yields same result
In any given marking, only a subset of the 
enabled transitions is explored = stubborn(m) ⊆ T
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Principles

• There exists a list of principles to build the 
subgraph

• Based on the selected principles, all 
properties of a certain class are preserved

In the following:
𝝅‘ = Path in subgraph
𝝅 = Path in original graph
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COM: The commutativity principle

• Transitions may be executed in another order
• Can shift transitions to the front of the path
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KEY: The key transition principle

• Transition that stays enabled
• Can push transition to the right
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VIS: The visibility principle

• VIS ensures the order of transitions visible for 
φ does not change

• Visible transitions in 𝝅‘ appear in the same 
order as in 𝝅, if they appear in 𝝅‘
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IGN: The non-ignoring principle

• All transitions are fired at least once in every 
circle

• Ensures that all transitions of 𝝅 are eventually 
occurring in 𝝅‘

All transitions
are enabled
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UPS: The up-set principle

• Stubborn set at m will always contain a 
transition of 𝝅

• Between current marking and final marking 
there is a transition from up-set
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BRA: The branching principle

• Ensures that visible transitions are 
not swapped with branches in the 
state space other than branches 
that are introduced by 
concurrency

• Enables reduction only in markings 
where just one (invisible) enabled 
transition is sufficient to meet all 
other principles
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Partial order reduction for CTL

• Has severe restrictions
• Either a singleton set of an 

invisible transition, that satisfies 
all other criteria ...
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Partial order reduction for CTL

• Has severe restrictions
• Either a singleton set of an 

invisible transition, that satisfies 
all other criteria ...

• Or we have to fire all enabled 
transitions

• Necessary to preserve BRA
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Good news!

In all reported cases the very limiting 
BRA principle can be dropped.

BRA: enables reduction only in markings where just one (invisible) 
enabled transition is sufficient to meet all the other principles
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Good news!

In all reported cases the very limiting 
BRA principle can be dropped.

BRA: enables reduction only in markings where just one (invisible) 
enabled transition is sufficient to meet all the other principles

In General:
less restrictive conditions (i.e. 
smaller set of principles to be met)
Þ potentially smaller stubborn-sets
Þ better reduction
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AG φ, EF φ

AG φ = invariant, EF φ = reachability

Structural analysis can also be applied:
• State equation with the CEGAR approach
• EF DEADLOCK – check for Commoner’s theorem

• There are already well known stubborn sets
• Reachability: over 90 % - CTL only 65 %
Þ Use the reachability stubborn sets

EF φ – Exists a path, where finally φ holds?
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AF φ, EG φ

AF φ ≡ F φ in LTL
Þ Use LTL-X preserving stubborn sets (no BRA)
Þ LTL: 90 % vs. CTL: 65 % 

Drop IGN for visible transitions.
Þ COM, KEY, VIS
Þ Smaller stubborn sets

EG φ 

EG φ – Exists a path, where permanently φ holds? 
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E (φ U ψ), A (φ R ψ) 

E (φ U ψ) stubborn sets must preserve two 
properties:
1. Reachability of ψ
2. Non-violation of φ
Combining reachability (EF) and non-violation 
(EG) stubborn sets:
Þ COM, UPS(ψ), VIS(φ) 

E (φ U ψ) – Exists a path, where permanently φ holds until ψ holds?

ψ

φφφ
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EGEF φ, AFAG φ

No special stubborn sets → CTL-X stubborn sets
But: check for the pair of temporal operators 
can be folded into a single depth-first search
Two cases:
1. Deadlock: deadlock-state has to satisfy φ
2. Loop: from marking m on the loop, marking 

m’ satisfying φ is reachable

EGEF φ – Exists a path, where permanently EF φ holds ?

EG φ
EF φ
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EFEG φ, AGAF φ

Nested depth-first search
Inner search: proceeds only through φ-markings 
and tries to find a cycle or a deadlock
Þ COM, KEY, VIS(φ) 
Outer search: proceeds through markings that 
have already proven not to be part of a φ-cycle 
(or a φ-deadlock)
Þ m ⊭ φ: COM, UPS(φ) 
Þ m ⊨ φ: COM, UPS(¬φ) 

EFEG φ – Exists a path to a φ-loop or φ-deadlock?

EG φ

φ
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AGEF φ, EFAG φ, 
AGEFAG φ, EFAGEF φ
• Only TSCC are relevant
• Use existing TSCC preserving stubborn sets
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Formulas starting with EX and AX

Check the respective formula without the 
leading EX operator.
All we need to do is:
• explore all enabled transitions of m0

• not store m0

Whenever m0 is visited during the search, it is 
treated as fresh marking.
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Single-path formulas

• Aim: apply LTL model checking instead of CTL
Þ BRA principle may be skipped
• Use rewriting system to recognise qualified 

formulas
Existential single-path formulas:

φ and ψ are existential single-path formulas, ω is a state predicate

- ω (base of inductive definition)
- EG ω

- EF φ

- E (ω U φ)

- E (φ R ω)

- φ ∨ ψ
- φ ∧ ω

Universal single-path formula
are defined similar.
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Boolean combinations

CTL formula is Boolean combination of 
subformulas
Þ Check subformulas individual

Advantage:
• Smaller set of visible transition
• Apply stubborn sets to formulas without 

X-operator
• Some fall into the class considered above
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Quick checks

For quite a few formulas we can add sufficient 
or necessary quick checks
E.g. AGEF φ → EF φ = nec., AG φ = suff.
State equation with CEGAR can be used
Þ Not much memory used
Þ Can run in parallel
Þ Solved 1.24 % in MCC’2018
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Simplify complex formulas

Tautologies – not all commonly known
• LoLA contains more than 100 rewrite rules 

based on CTL* tautologies
ILP-techniques using the Petri net state 
equation can be applied to atomic propositions
• Sometimes proving them invariantly true or 

false

Taking Some Burden off an 
Explicit CTL Model Checker

Torsten Liebke (Rostock) 31



Distribution in the MCC’2018
(Place/transition nets only)

# of formulas In %
All 24544 100,0
Special 13366 54,46
Preprocessing 3704 15,09
CTL 7474 30,45
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Statistics

Formula All
Solved 

CTL
Solved 
special

Solved 
more 

absolut

Solved 
more in 

%

Solved 
remaining 

in %
E(F(*)) / A(G(*)) 2471 1438 2300 862 34,9 83,4
E(G(*)) / A(F(*)) 1767 1625 1670 45 2,5 31,7
E((* R *)) / A((* U *)) 168 157 160 3 1,8 27,3
E((* U *)) / A((* R *)) 318 187 198 11 3,5 8,4
E(F(E(G(*)))) / A(G(A(F(*)))) 515 340 431 91 17,7 52,0
E(G(E(F(*)))) / A(F(A(G(*)))) 385 276 277 1 0,3 0,9
E(X(...)) / A(X(...)) 602 407 539 132 21,9 67,7
Single-path formulas 421 275 295 20 4,8 13,7
TSCC-based 897 289 349 60 6,7 9,9
Boolean 5822 4250 5239 989 17,0 62,9
All 13366 9244 11458 2214 16,6 53,7
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Summary

Use special features of the formula

Simplify complex formulas

Necessary / sufficient quick checks

CTL over 80%
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Time for discussion!


