
Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke and Karsten Wolf

University of Rostock

Model checking

Model
checker

Model

Spezifi-
cation

'
Counter
example

Witness
path

ü

x

Memory
overflow

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 2

Computational Tree logic (CTL)

φ ::= T | F | FIREABLE | DEADLOCK | 𝜌
| ¬φ | φ ∧ φ | φ ∨ φ | φ ⟶ φ
| AX φ | EX φ
| AF φ | EF φ
| AG φ | EG φ
| A (φ U φ) | E (φ U φ)

Path quantifier
A: inevitably (along all paths)
E: possibly (there exists a path)

Temporal operators
G: globally (always)
F: in future (eventually)
X: neXt state
U: untilTaking Some Burden off an

Explicit CTL Model Checker
Torsten Liebke (Rostock) 3

Linear Time Logic (LTL)

φ ::= T | F | FIREABLE | DEADLOCK | 𝜌
| ¬φ | φ ∧ φ | φ ∨ φ | φ ⟶ φ
| X φ | F φ | G φ | (φ U φ)

Similar to CTL but path quantifiers are not used.

LTL: linear time CTL: branching time
Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 4

LoLA’s performance at the MCC

5

Upper bounds
over 80 %

Reachability
over 90 %

LTL
over 85 %

CTL
only 65 %

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 5

CTL performs worse than the rest:
LoLA’s performance at the MCC

6

Upper bounds
over 80 %

Reachability
over 90 %

LTL
over 85 %

CTL
only 65 %

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 6

Simple and frequently occurring
formulas
Many CTL queries have a rather simple
structure – only few temporal operators
• In the MCC this could be an artefact of the

randomised formula generating mechanism
• Share same experience with LoLA users

Goal Find for each formula
an optimized algorithm

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 7

Systematic approach

• Most approaches we’re using are well known
• Combining them in a systematic way, to push

the limits further

Building a uniformly picture
Þ Especially for stubborn sets
Þ Pre-processing

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 8

Partial order reduction:
The stubborn set method
Given: Petri net N = [P,T,F,W,m0] and property φ
Goal: produce subgraph of the reachability graph
Condition: evaluation of φ yields same result
In any given marking, only a subset of the
enabled transitions is explored = stubborn(m) ⊆ T

m

m't1

t1t2

mf

m''

t2

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 9

Principles

• There exists a list of principles to build the
subgraph

• Based on the selected principles, all
properties of a certain class are preserved

In the following:
𝝅‘ = Path in subgraph
𝝅 = Path in original graph

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 10

COM: The commutativity principle

• Transitions may be executed in another order
• Can shift transitions to the front of the path

m m'
w

mf

t

m m''
w

mf

t

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 11

KEY: The key transition principle

• Transition that stays enabled
• Can push transition to the right

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 12

VIS: The visibility principle

• VIS ensures the order of transitions visible for
φ does not change

• Visible transitions in 𝝅‘ appear in the same
order as in 𝝅, if they appear in 𝝅‘

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 13

IGN: The non-ignoring principle

• All transitions are fired at least once in every
circle

• Ensures that all transitions of 𝝅 are eventually
occurring in 𝝅‘

All transitions
are enabled

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 14

UPS: The up-set principle

• Stubborn set at m will always contain a
transition of 𝝅

• Between current marking and final marking
there is a transition from up-set

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 15

BRA: The branching principle

• Ensures that visible transitions are
not swapped with branches in the
state space other than branches
that are introduced by
concurrency

• Enables reduction only in markings
where just one (invisible) enabled
transition is sufficient to meet all
other principles

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 16

Partial order reduction for CTL

• Has severe restrictions
• Either a singleton set of an

invisible transition, that satisfies
all other criteria ...

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 17

Partial order reduction for CTL

• Has severe restrictions
• Either a singleton set of an

invisible transition, that satisfies
all other criteria ...

• Or we have to fire all enabled
transitions

• Necessary to preserve BRA

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 18

Good news!

In all reported cases the very limiting
BRA principle can be dropped.

BRA: enables reduction only in markings where just one (invisible)
enabled transition is sufficient to meet all the other principles

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 19

Good news!

In all reported cases the very limiting
BRA principle can be dropped.

BRA: enables reduction only in markings where just one (invisible)
enabled transition is sufficient to meet all the other principles

In General:
less restrictive conditions (i.e.
smaller set of principles to be met)
Þ potentially smaller stubborn-sets
Þ better reduction

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 20

AG φ, EF φ

AG φ = invariant, EF φ = reachability

Structural analysis can also be applied:
• State equation with the CEGAR approach
• EF DEADLOCK – check for Commoner’s theorem

• There are already well known stubborn sets
• Reachability: over 90 % - CTL only 65 %
Þ Use the reachability stubborn sets

EF φ – Exists a path, where finally φ holds?

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 21

AF φ, EG φ

AF φ ≡ F φ in LTL
Þ Use LTL-X preserving stubborn sets (no BRA)
Þ LTL: 90 % vs. CTL: 65 %

Drop IGN for visible transitions.
Þ COM, KEY, VIS
Þ Smaller stubborn sets

EG φ

EG φ – Exists a path, where permanently φ holds?

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 22

E (φ U ψ), A (φ R ψ)

E (φ U ψ) stubborn sets must preserve two
properties:
1. Reachability of ψ
2. Non-violation of φ
Combining reachability (EF) and non-violation
(EG) stubborn sets:
Þ COM, UPS(ψ), VIS(φ)

E (φ U ψ) – Exists a path, where permanently φ holds until ψ holds?

ψ

φφφ

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 23

EGEF φ, AFAG φ

No special stubborn sets → CTL-X stubborn sets
But: check for the pair of temporal operators
can be folded into a single depth-first search
Two cases:
1. Deadlock: deadlock-state has to satisfy φ
2. Loop: from marking m on the loop, marking

m’ satisfying φ is reachable

EGEF φ – Exists a path, where permanently EF φ holds ?

EG φ
EF φ

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 24

EFEG φ, AGAF φ

Nested depth-first search
Inner search: proceeds only through φ-markings
and tries to find a cycle or a deadlock
Þ COM, KEY, VIS(φ)
Outer search: proceeds through markings that
have already proven not to be part of a φ-cycle
(or a φ-deadlock)
Þ m ⊭ φ: COM, UPS(φ)
Þ m ⊨ φ: COM, UPS(¬φ)

EFEG φ – Exists a path to a φ-loop or φ-deadlock?

EG φ

φ

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 25

AGEF φ, EFAG φ,
AGEFAG φ, EFAGEF φ
• Only TSCC are relevant
• Use existing TSCC preserving stubborn sets

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 26

Formulas starting with EX and AX

Check the respective formula without the
leading EX operator.
All we need to do is:
• explore all enabled transitions of m0

• not store m0

Whenever m0 is visited during the search, it is
treated as fresh marking.

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 27

Single-path formulas

• Aim: apply LTL model checking instead of CTL
Þ BRA principle may be skipped
• Use rewriting system to recognise qualified

formulas
Existential single-path formulas:

φ and ψ are existential single-path formulas, ω is a state predicate

- ω (base of inductive definition)
- EG ω

- EF φ

- E (ω U φ)

- E (φ R ω)

- φ ∨ ψ
- φ ∧ ω

Universal single-path formula
are defined similar.

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 28

Boolean combinations

CTL formula is Boolean combination of
subformulas
Þ Check subformulas individual

Advantage:
• Smaller set of visible transition
• Apply stubborn sets to formulas without

X-operator
• Some fall into the class considered above
Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 29

Quick checks

For quite a few formulas we can add sufficient
or necessary quick checks
E.g. AGEF φ → EF φ = nec., AG φ = suff.
State equation with CEGAR can be used
Þ Not much memory used
Þ Can run in parallel
Þ Solved 1.24 % in MCC’2018

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 30

Simplify complex formulas

Tautologies – not all commonly known
• LoLA contains more than 100 rewrite rules

based on CTL* tautologies
ILP-techniques using the Petri net state
equation can be applied to atomic propositions
• Sometimes proving them invariantly true or

false

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 31

Distribution in the MCC’2018
(Place/transition nets only)

of formulas In %
All 24544 100,0
Special 13366 54,46
Preprocessing 3704 15,09
CTL 7474 30,45

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 32

Statistics

Formula All
Solved

CTL
Solved
special

Solved
more

absolut

Solved
more in

%

Solved
remaining

in %
E(F(*)) / A(G(*)) 2471 1438 2300 862 34,9 83,4
E(G(*)) / A(F(*)) 1767 1625 1670 45 2,5 31,7
E((* R *)) / A((* U *)) 168 157 160 3 1,8 27,3
E((* U *)) / A((* R *)) 318 187 198 11 3,5 8,4
E(F(E(G(*)))) / A(G(A(F(*)))) 515 340 431 91 17,7 52,0
E(G(E(F(*)))) / A(F(A(G(*)))) 385 276 277 1 0,3 0,9
E(X(...)) / A(X(...)) 602 407 539 132 21,9 67,7
Single-path formulas 421 275 295 20 4,8 13,7
TSCC-based 897 289 349 60 6,7 9,9
Boolean 5822 4250 5239 989 17,0 62,9
All 13366 9244 11458 2214 16,6 53,7

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 33

Summary

Use special features of the formula

Simplify complex formulas

Necessary / sufficient quick checks

CTL over 80%

Taking Some Burden off an
Explicit CTL Model Checker

Torsten Liebke (Rostock) 34

Time for discussion!

