Taking Some Burden off an Explicit CTL Model Checker

Torsten Liebke and Karsten Wolf

University of Rostock

Computational Tree logic (CTL)

ϕ ::= T | F | FIREABLE | DEADLOCK | ρ $\neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \longrightarrow \varphi$ | AX φ | EX φ AF ϕ | EF ϕ | AG φ | EG φ | A (φ U φ) | E (φ U φ)

Path quantifier

A: inevitably (along all paths) E: possibly (there exists a path)

Temporal operators

G: globally (always) F: in future (eventually) X: neXt state

Taking Some Burden off an T Torsten Liebke (Rostock) $U:$ $Until$ Explicit CTL Model Checker **Torsten Liebke (Rostock) U. UIILII** 3

Linear Time Logic (LTL)

 ϕ ::= T | F | FIREABLE | DEADLOCK | ρ $| \neg \varphi | \varphi \wedge \varphi | \varphi \vee \varphi | \varphi \rightarrow \varphi$ | X φ | F φ | G φ | (φ U φ)

Similar to CTL but path quantifiers are not used.

LTL: linear time CTL: branching time

Taking Some Burden off an Explicit CTL Model Checker Torsten Liebke (Rostock) ⁴

LoLA's performance at the MCC

CTL performs worse than the rest: LoLA's performance at the MCC

Simple and frequently occurring formulas

Many CTL queries have a rather simple structure – only few temporal operators

- In the MCC this could be an artefact of the randomised formula generating mechanism
- Share same experience with LoLA users

Systematic approach

- Most approaches we're using are well known
- Combining them in a systematic way, to push the limits further

Building a uniformly picture

- \Rightarrow Especially for stubborn sets
- \Rightarrow Pre-processing

Partial order reduction: The stubborn set method

Given: Petri net $N = [P,T,F,W,m_0]$ and property ϕ **Goal:** produce subgraph of the reachability graph **Condition:** evaluation of φ yields same result In any given marking, only a subset of the

enabled transitions is explored = stubborn(m) \subseteq T

Taking Some Burden off an Explicit CTL Model Checker Checker Torsten Liebke (Rostock) 39 and 2011 12:38 and 2011 12:38 and 2011 12:38 and 2011 12:38 and 2012 12:38 and 2012

Principles

- There exists a list of principles to build the subgraph
- Based on the selected principles, all properties of a certain class are preserved

In the following: π' = Path in subgraph π = Path in original graph

Taking Some Burden off an Explicit CTL Model Checker Torsten Liebke (Rostock) 10

COM: The commutativity principle

- Transitions may be executed in another order
- Can shift transitions to the front of the path

KEY: The key transition principle

- Transition that stays enabled
- Can push transition to the right

VIS: The visibility principle

- VIS ensures the order of transitions visible for φ does not change
- Visible transitions in π' appear in the same order as in π , if they appear in π'

IGN: The non-ignoring principle

- All transitions are fired at least once in every circle
- Ensures that all transitions of π are eventually occurring in π'

UPS: The up-set principle

- Stubborn set at m will always contain a transition of π
- Between current marking and final marking there is a transition from up-set

BRA: The branching principle

- Ensures that visible transitions are not swapped with branches in the state space other than branches that are introduced by concurrency
- Enables reduction only in markings where just one (invisible) enabled transition is sufficient to meet all other principles

Partial order reduction for CTL

- Has severe restrictions
- Either a singleton set of an invisible transition, that satisfies all other criteria ...

Partial order reduction for CTL

- Has severe restrictions
- Either a singleton set of an invisible transition, that satisfies all other criteria ...

- Or we have to fire all enabled transitions
- Necessary to preserve BRA

Good news!

In all reported cases the very limiting BRA principle can be dropped.

BRA: enables reduction only in markings where just one (invisible) enabled transition is sufficient to meet all the other principles

Taking Some Burden off an Explicit CTL Model Checker **Torsten Liebke (Rostock)** 19

Good news!

In all reported cases the very limiting BRA principle can be dropped.

In General:

less restrictive conditions (i.e.

smaller set of principles to be met)

- \Rightarrow potentially smaller stubborn-sets
- \Rightarrow better reduction

BRA: enables reduction only in markings where just one (invisible) enabled transition is sufficient to meet all the other principles

AG $φ$, EF $φ$

AG ϕ = invariant, EF ϕ = reachability

- There are already well known stubborn sets
- Reachability: over 90 % CTL only 65 %
- \Rightarrow Use the reachability stubborn sets

Structural analysis can also be applied:

- State equation with the CEGAR approach
- EF DEADLOCK check for Commoner's theorem

EF ϕ – Exists a path, where finally ϕ holds?

Taking Some Burden off an Explicit CTL Model Checker Torsten Liebke (Rostock) 21 Torsten Liebke (Rostock)

AF φ, EG φ

 $AF \phi \equiv F \phi$ in LTL

 \Rightarrow Use LTL-X preserving stubborn sets (no BRA)

 \Rightarrow LTL: 90 % vs. CTL: 65 %

Drop IGN for visible transitions.

- \Rightarrow COM, KEY, VIS
- \Rightarrow Smaller stubborn sets

EG ϕ – Exists a path, where permanently ϕ holds?

Taking Some Burden off an Explicit CTL Model Checker Torsten Liebke (Rostock) 22

E (φ U ψ), A (φ R ψ)

E (φ U ψ) stubborn sets must preserve two properties:

- 1. Reachability of ψ
- 2. Non-violation of φ

Combining reachability (EF) and non-violation (EG) stubborn sets:

 \Rightarrow COM, UPS(ψ), VIS(ϕ)

E (φ U ψ) – Exists a path, where permanently φ holds until ψ holds?

Taking Some Burden off an Explicit CTL Model Checker **Explicit CTL Model Checker** Torsten Liebke (Rostock) 23

ψ

φ φ

EGEF φ, AFAG φ

No special stubborn sets \rightarrow CTL-X stubborn sets But: check for the pair of temporal operators can be folded into a single depth-first search Two cases:

- 1. Deadlock: deadlock-state has to satisfy φ
- 2. Loop: from marking m on the loop, marking m' satisfying $φ$ is reachable

EGEF ϕ – Exists a path, where permanently EF ϕ holds ?

Taking Some Burden off an Explicit CTL Model Checker Checker Torsten Liebke (Rostock) 24

EFEG φ, AGAF φ

Nested depth-first search

Inner search: proceeds only through φ-markings and tries to find a cycle or a deadlock

\Rightarrow COM, KEY, VIS(ϕ)

Outer search: proceeds through markings that have already proven not to be part of a φ-cycle (or a φ-deadlock)

- \Rightarrow m \notin φ: COM, UPS(φ)
- \Rightarrow m \models ϕ : COM, UPS(\neg ϕ)

EFEG ϕ – Exists a path to a ϕ -loop or ϕ -deadlock?

Taking Some Burden off an Explicit CTL Model Checker Checker Torsten Liebke (Rostock) 25

AGEF φ, EFAG φ, AGEFAG φ, EFAGEF φ

- Only TSCC are relevant
- Use existing TSCC preserving stubborn sets

Formulas starting with EX and AX

Check the respective formula without the leading EX operator.

All we need to do is:

- explore all enabled transitions of m_0
- not store m_0

Whenever m_0 is visited during the search, it is treated as fresh marking.

Single-path formulas

- Aim: apply LTL model checking instead of CTL
- \Rightarrow BRA principle may be skipped
- Use rewriting system to recognise qualified formulas

Existential single-path formulas:

φ and ψ are existential single-path formulas, ω is a state predicate

- ω (base of inductive definition)
- EG ω - E (φ R ω)
- EF φ - φ ∨ ψ
- E (ω U φ) φ Λ ω

Universal single-path formula are defined similar.

Taking Some Burden off an Explicit CTL Model Checker Checker Torsten Liebke (Rostock) 28 and 28

Boolean combinations

CTL formula is Boolean combination of subformulas

 \Rightarrow Check subformulas individual

Advantage:

- Smaller set of visible transition
- Apply stubborn sets to formulas without X-operator
- Some fall into the class considered above

Quick checks

For quite a few formulas we can add sufficient or necessary quick checks

E.g. AGEF $\phi \rightarrow$ EF ϕ = nec., AG ϕ = suff.

State equation with CEGAR can be used

- \Rightarrow Not much memory used
- \Rightarrow Can run in parallel
- \Rightarrow Solved 1.24 % in MCC'2018

Simplify complex formulas

Tautologies – not all commonly known

• LoLA contains more than 100 rewrite rules based on CTL* tautologies

ILP-techniques using the Petri net state equation can be applied to atomic propositions

• Sometimes proving them invariantly true or

false

Distribution in the MCC'2018 (Place/transition nets only)

Statistics

Simplify complex formulas

Use special features of the formula

Necessary / sufficient quick checks

CTL over 80%

Taking Some Burden off an Explicit CTL Model Checker Checker Torsten Liebke (Rostock) 34

Time for discussion!

