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Application: Chemical Reaction Networks

enzyme reactant

.

Enzymatic catalysis: E + R— E + P

E+Sy—>E+S - E+E*
F+E*—>F+§ - F+5,
E* + 8 = E*+5F —- E* + 57
F*+ 85 > F*+8F = F*+ 57

[A Petri net approach to the study of persistence in chemical reaction networks, Angeli et al., '06]
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Application: Population Protocols

[Angluin et al., '04]
Distributed computing model where identical

finite-state mobile agents jointly compute a
function.

Agents communicate through rendez-vous.

[The computational power of
population protocols, Angluin et al.,’06]



Application: Population Protocols

Distributed computing model for identical finite-state mobile agents.

Immediate observation population protocols: ﬁ

An agent observes an other agent’s state and updates
its own based on this information.

Introduced to model sensor networks.

O
b

[The computational power of

population protocols, Angluin et al.,’06]
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Parameterized Problems

In these application domains we are interested in parameterized problems.

e Goal of a protocol: compute a function f: N — {0,1)
* Protocol: Petri net V. Input: initial marking M,

* Correctness: for every initial marking M,,, the Petri net (N, M,)) “computes” f(M,).

Initial markings: M(gn) =n-p

T

parameter

This protocol is correct if and only if for every
initial marking Mé”):

e n >3 = all markings reachable from M;"
can reach the marking with all tokens in p;.

e n < 3 = there is no reachable marking with
a token in ps.

6/15 [Angluin et al.,’06]
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We consider infinite sets of markings defined by counting constraints.

e.g. in a Petri net with two places p;and p,

XL
number of tokens in p, ’

lower bound upper bound

T /

e An expression 2 <x, <35 isan
atomic bound.

e Counting constraints are boolean
combinations of atomic bounds.

2<xL0A
2<x <™

2<x ooy 0<x <2A
OSX2S2 OSXZSOO



Parameterized Reachability and Coverability

INPUT: An IO net N, and two sets of markings S and S’ described by counting
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INPUT: An IO net N, and two sets of markings S and S’ described by counting

constraints.

Parameterized Reachability

QUESTION: Are there markings M € S and M’ € S’ such that M’ is reachable

fromMinnet N ?

Parameterized Coverability

QUESTION: Are there markings M € S and M’ € S’ such that M’ is coverable
by Minnet N ?
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Results

Conservative Petri nets Immediate Observation nets
Reachability PSPACE-complete PSPACE-complete
Coverability PSPACE-complete PSPACE-complete
Param-Reachability TOWER-hard PSPACE-complete
(non-elementary)
Param-Coverability EXPSPACE-hard PSPACE-complete

Compared to arbitrary conservative Petri nets, IO nets
e don’t lose expressivity, and

 do much better for parameterized problems: deciding for infinitely many

markings is not harder than for a single marking!
9/15



Application: Correctness of IOPP

[Angluin, Aspnes, Diamada, Fischer, Peralta, '04] [Angluin, Aspnes, Eisenstat, Ruppert, '07]
General population protocols Immediate observation population protocols

10/15



Application: Correctness of IOPP

[Angluin, Aspnes, Diamada, Fischer, Peralta, '04] [Angluin, Aspnes, Eisenstat, Ruppert, '07]
General population protocols Immediate observation population protocols

v

[Esparza, Ganty, Leroux, Majumdar, ’15]

Correctness is reducible to

reachability for Petri nets;
decidable and TOWER-hard

10/15



Application: Correctness of IOPP

[Angluin, Aspnes, Diamada, Fischer, Peralta, '04] [Angluin, Aspnes, Eisenstat, Ruppert, '07]
General population protocols Immediate observation population protocols
v v
[Esparza, Ganty, Leroux, Majumdar, ’15] [Esparza, Ganty, Majumdar, Weil-Kennedy, ’18]
Correctness is reducible to Correctness is PSPACE-hard
reachability for Petri nets; and in EXPSPACE

decidable and TOWER-hard

10/15



Application: Correctness of IOPP

[Angluin, Aspnes, Diamada, Fischer, Peralta, '04] [Angluin, Aspnes, Eisenstat, Ruppert, '07]
General population protocols Immediate observation population protocols
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Correctness is reducible to Correctness is PSPACE-hard
reachability for Petri nets; and in EXPSPACE

decidable and TOWER-hard

\4

[This paper]

Correctness is PSPACE-complete
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Not a counting constraint!
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Building Block

Pruning Theorem

Let N be an IO net with n places.

If a marking M’ is coverable by some marking M, then M’ is coverable
by some marking C such that

1. Cis covered by M.
2. |C| < M| +n’

Pruning: we remove tokens from the run that covers M’ without modifying
Its covering property.



