

Lisa L. Mannel, Wil M. P. van der Aalst June 27th, 2019

Process Discovery

Introducing the Problem

Process Discovery - Introduction

Input: Event Log

- Multiset of *traces* (sequences) of *activities*
- Interpretable as a finite *language*

Example:

Set of Activities: $A = \{a, b, c, d, e, \triangleright, \blacksquare\}$ L = {{ ($\triangleright, a, c, d, \blacksquare$)³, ($\triangleright, b, c, e, \blacksquare$)⁵ }}

Output: Process Model

• Petri Nets (subset)

Process Discovery - Introduction

Input: Event Log

- Multiset of *traces* (sequences) of *activities*
- Interpretable as a finite *language*

Example:

Set of Activities: $A = \{a, b, c, d, e, \triangleright, \blacksquare\}$ L = {{ (\triangleright , a, c, d, \blacksquare)³, (\triangleright , b, c, e, \blacksquare)⁵ }}

Precision Simplicity Noise Handling

> Time Efficiency

Fitness

Process Discovery - Introduction

Input: Event Log

- Multiset of *traces* (sequences) of *activities*
- Interpretable as a finite *language*

Example:

Set of Activities: $A = \{a, b, c, d, e, \triangleright, \blacksquare\}$ L = {{ (\triangleright , a, c, d, \blacksquare)³, (\triangleright , b, c, e, \blacksquare)⁵ }}

Efficiency

Process Discovery – Related Work

Region-based approaches

- High fitness & precision
- Can find complex structures
- Low simplicity ('Spaghetti'-Models)
- Cannot handle infrequent behavior

Precision Simplicity Noise Handling

> Time Efficiency

Fitness

Chair of Process and Data Science

Process

Process Discovery – Related Work

Region-based approaches

- High fitness & precision
- Can find complex structures
- Low simplicity ('Spaghetti'-Models)
- Cannot handle infrequent behavior

Our approach

(inspired by language-based regions)

- High fitness & precision
- Can find complex structures
- → Improve simplicity
- → Handle infrequent behavior

Our Approach An Overview

Our Approach – General Idea

- 1. Input: Log & Threshold
 - Special start/end activities attached to each trace
 - Initialize Petri net without places
 - Each transition corresponds to one activity
- 2. Evaluate all possible places
 - find all fitting places
 - $\circ~$ high fitness and precision
- 3. Post-processing
 - Remove implicit places

Our Approach – General Idea

- 1. Input: Log & Threshold
 - Special start/end activities attached to each trace
 - Initialize Petri net without places
 - Each transition corresponds to one activity
- 2. Evaluate all possible places
 - find all fitting places
 - $\circ~$ high fitness and precision
- 3. Post-processing
 - Remove implicit places

Our Approach – General Idea

- 1. Input: Log & Threshold
 - Special start/end activities attached to each trace
 - Initialize Petri net without places
 - Each transition corresponds to one activity
- 2. Evaluate all possible places
 - find all fitting places
 - $\circ~$ high fitness and precision
- 3. Post-processing
 - Remove implicit places

- Definition of Places:
 (I|O) incoming & outgoing activities
- Number of candidate places: |P(A)| * |P(A)| → 2^{|A|} * 2^{|A|} Exponential in the number of activities! For example: |A|=10 → 1,048,576
- Brute Force: play the token game for each trace on each candidate place
- → Increase efficiency
- → Handle infrequent behavior

Our Approach – Monotonicity Results

Underfed Places

Overfed Places

Our Approach – Monotonicity Results

Use threshold for infrequent behavior!

Underfed Places

Overfed Places

 $(\blacktriangleright | a,b) (\blacktriangleright | a, \blacksquare) (\blacktriangleright | b, \blacksquare) (a | a,b) (a | a, \blacksquare) (a | b, \blacksquare) (b | a,b) (b | a, \blacksquare) (b | b, \blacksquare) (\triangleright, a | a) (\triangleright, b | a) (a,b | a) (\triangleright, a | b) (\triangleright, b | b) (a,b | b) (\bullet, a | \blacksquare) (\triangleright, b | \blacksquare) (a,b |$

(▶|a,b,∎) (a|a,b,∎) (b|a,b,∎) (▶,a|a,b) (▶,a|a,∎) (▶,a|b,∎) (▶,b|a,b) (▶,b|a,∎) (▶,b|b,∎) (a,b|a,b) (a,b|a,∎) (a,b|a,∎) (▶,a,b|a) (▶,a,b|b) (▶,a,b|∎)

 $(\blacktriangleright, a | a, b, \blacksquare) \ (\blacktriangleright, b | a, b, \blacksquare) \ (a, b | a, b, \blacksquare) \ (\blacktriangleright, a, b | a, b) \ (\blacktriangleright, a, b | a, \blacksquare) \ (\blacktriangleright, a, b | b, \blacksquare)$

 $(\blacktriangleright | a,b) (\blacktriangleright | a, \blacksquare) (\blacktriangleright | b, \blacksquare) (a | a,b) (a | a, \blacksquare) (a | b, \blacksquare) (b | a,b) (b | a, \blacksquare) (b | b, \blacksquare) (\blacktriangleright , a | a) (\blacktriangleright , a | a) (\blacktriangleright , a | b) (\blacktriangleright , a | b) (\bullet , a | \blacksquare) (\blacktriangleright , a | \blacksquare) (\bullet , b | \blacksquare) (a,b |$

(▶|a,b,∎) (a|a,b,∎) (b|a,b,∎) **(▶,a|a,b) (▶,a|a,∎) (▶,a|b,∎) (**▶,b|a,b) **(▶,b|a,∎) (**▶,b|b,∎) (a,b|a,b) (a,b|a,∎) (a,b|b,∎) (▶,a,b|a) (▶,a,b|b) (▶,a,b|∎)

 $(\blacktriangleright, a | a, b, \blacksquare) (\blacktriangleright, b | a, b, \blacksquare) (a, b | a, b, \blacksquare) (\blacktriangleright, a, b | a, b) (\blacktriangleright, a, b | a, \blacksquare) (\blacktriangleright, a, b | b, \blacksquare)$

0 L=

Our Approach – Running Example $L = \{\{(\blacktriangleright, a, b, \blacksquare)\}\} \rightarrow \text{Transitions} = \{(\blacktriangleright, a, b, \blacksquare)\}$

Traversal Strategy:

- Exploit monotonicity
- Find all fitting places
- Visit each place at most once
- Limited storage

 $(\models|a,b) (\models|a,\blacksquare) (\models|b,\blacksquare) (a|a,b) (a|a,\blacksquare) (a|b,\blacksquare) (b|a,b) (b|a,\blacksquare) (b|b,\blacksquare) (\models,a|a) (\models,b|a) (a,b|a) (\models,a|b) (\models,b|b) (a,b|b) (\models,a|\blacksquare) (\models,b|\blacksquare) (a,b|\blacksquare) (a,$

(▶[a) (▶[b) (▶]∎) (a|a) (a|b) (a|∎) (b|a) (b|b) (b|∎)

 $(\models[a,b,\texttt{m})(a|a,b,\texttt{m})(b|a,b,\texttt{m})(\models,a|a,\texttt{m})(\models,a|a,\texttt{m})(\models,a|b,\texttt{m})(\models,b|a,b)(\models,b|a,\texttt{m})(\models,b|b,\texttt{m})(a,b|a,b)(a,b|a,\texttt{m})(a,b|a,\texttt{m})(a,b|b,\texttt{m})(a,b|a,\texttt{m$

 $(\blacktriangleright, a|a,b, I)$ $(\blacktriangleright, b|a,b, I)$ (a,b|a,b, I) $(\blacktriangleright, a,b|a,b)$ $(\blacktriangleright, a,b|a, I)$ $(\blacktriangleright, a,b|b, I)$

(▶,a,b|a,b,∎)

Traversal Strategy:

- Exploit monotonicity
- Find all fitting places
- Visit each place at most once
- Limited storage

(▶[a) (▶[b) (▶[∎) (a[a) (a[b) (a|∎) (b[a) (b[b) (b|∎)

 $(\blacktriangleright [a,b) (\blacktriangleright [a,\blacksquare) (\blacktriangleright [b,\blacksquare) (a]a,b) (a]a,\blacksquare) (a|b,\blacksquare) (b|a,b) (b|a,\blacksquare) (b|b,\blacksquare) ((\triangleright,a|a) (\triangleright,b|a) (a,b|a) (\triangleright,a|b) (\triangleright,b|b) (a,b|b) (\bullet,a|\blacksquare) (\bullet,b|\blacksquare) (a,b|\blacksquare)$

(▶[a,b,∎) (a[a,b,∎) (b[a,b,∎) (▶,a[a,b) (▶,a[a,∎) (▶,a[b,∎)) (▶,b[a,b) (▶,b[a,∎) (▶,b[b,∎) (a,b[a,b) (a,b[a,∎) (a,b[b,∎)) (▶,a,b[a) (▶,a,b[b) (▶,a,b]) (▶,a,b]) (▶,a,b])

 $(\blacktriangleright, a|a,b, \bullet)$ $(\blacktriangleright, b|a,b, \bullet)$ $(a,b|a,b, \bullet)$ $(\blacktriangleright, a,b|a,b)$ $(\blacktriangleright, a,b|a, \bullet)$ $(\blacktriangleright, a,b|b, \bullet)$

Traversal Strategy:

- Exploit monotonicity
- Find all fitting places
- Visit each place at most once
- Limited storage

(▶[a) (▶[b) (▶[∎) (a[a) (a[b) (a|∎) (b[a) (b[b) (b|∎)

 $(\blacktriangleright [a,b) (\blacktriangleright [a,=) (\blacktriangleright [b,=) (a[a,b) (a[a,=) (a[b,=) (b[a,b) (b[a,=) (b[b,=) ((\triangleright ,a[a) (\triangleright ,b]a) (a,b[a) (\triangleright ,a[b) (\triangleright ,b]b) (a,b[b) (\bullet ,a[=) (\bullet ,b]=) (a,b[=) (a,$

(▶|a,b,∎) (a|a,b,∎) (b|a,b,∎) (▶,a|a,b) (▶,a|a,∎) (▶,a|b,∎) (▶,b|a,b) (▶,b|a,∎) (▶,b|b,∎) (a,b|a,b) (a,b|a,∎) (a,b|a,∎) (▶,a,b|a) (▶,a,b|b) (▶,a,b|∎)

 $(\triangleright, a|a, b, \bullet)$ $(\triangleright, b|a, b, \bullet)$ $(a, b|a, b, \bullet)$ $(\triangleright, a, b|a, b)$ $(\triangleright, a, b|a, \bullet)$ $(\triangleright, a, b|b, \bullet)$

(▶|a) (▶|b) (▶|∎) (a|a) (a|b) (a|∎) (b|a) (b|b) (b|∎)

((),a,b) () (),a) (),b) (a[a,b) (a[a,a) (a[b,a) (b[a,b) (b[a,a) (b[a,a) (b[b,a) ((),b]a) (a,b]a) (b,b) (a,b]b) (a,b]b) (a,b]b) (a,b]b) (b,b) (a,b]a) (b,b]a) (

(▶[a,b,∎) (a[a,b,∎) (b[a,b,∎) (▶,a[a,b)(▶,a]a,∎) (▶,a[b,∎) (▶,b[a,b)(♠,b[a,∎) (a,b[a,b) (a,b[a,b) (a,b[a,∎) (a,b[a,∎) (a,b[a,b) (▶,a,b]a) (▶,a,b]b) (▶,a,b[u)

 $(\blacktriangleright, a|a,b, \bullet)$ $(\blacktriangleright, b|a,b, \bullet)$ $(a,b|a,b, \bullet)$ $(\blacktriangleright, a,b|a,b)$ $(\blacktriangleright, a,b|a, \bullet)$ $(\blacktriangleright, a,b|b, \bullet)$

(▶,a,b|a,b,∎)

 $(\blacktriangleright a) (\blacktriangleright b) (\blacktriangleright a) (a|a) (a|b) (a|a) (b|a) (b|b) (b|a)$

(▶[a,b] (▶[a,=) (▶[b,=) (a[a,b) (a[a,=) (a[b,=) (b[a,b) (b[a,=) (b[b,=) (▶,a]a) (▶,b]a) (a,b]a) (▶,a]b) (▶,b]b) (a,b]b) (▷,a[=) (▶,b]=) (a,b]=)

(▶[a,b,∎) (a[a,b,∎) (b[a,b,∎) (▶,a[a,b) (▶,a[a,∎) (▶,a[b,∎) (▶,b]a,b) (▶,b[a,∎) (▶,b[b,∎) (a,b[a,b) (a,b]a,∎) (a,b[a,∎) (▶,a,b]a) (▶,a,b]b) (▶,a,b]∎)

 $(\blacktriangleright, a|a,b, \bullet)$ $(\blacktriangleright, b|a,b, \bullet)$ $(a,b|a,b, \bullet)$ $(\blacktriangleright, a,b|a,b)$ $(\triangleright, a,b|a, \bullet)$ $(\triangleright, a,b|b, \bullet)$

(▶,a,b|a,b,∎)

▶a,b) (▶a,a) (▶|b,a) (a|a,b) (a|a,a) (a|b,a) (b|a,b) (b|a,a) (b|b,a) (▶,a|a) (▶,b|a) (a,b|a) (▶,a|b) (▶,b|b) (a,b|b) (▶,a|a) (▶,b|a) (a,b|a)

(▶[a,b,∎) (a[a,b,∎) (b[a,b,∎) (▶,a[a,b) (▶,a|a,∎) (▶,a|b,∎) (▶,b|a,b) (▶,b|a,∎) (▶,b|b,∎) (a,b]a,b) (a,b]a,∎) (a,b|a,∎) (▶,a,b]a) (▶,a,b]b) (▶,a,b]∎)

 $(\blacktriangleright, a|a,b,\blacksquare)$ $(\blacktriangleright, b|a,b,\blacksquare)$ $(a,b|a,b,\blacksquare)$ $(\blacktriangleright, a,b|a,b)$ $(\triangleright, a,b|a,\blacksquare)$ $(\triangleright, a,b|b,\blacksquare)$

(▶,a,b|a,b,∎)

of Process

of Process

r of Process

Post-processing: removal of implicit places (existing approaches)

Our Approach Evaluation

Our Approach – Evaluation

- Implemented in ProM, using Java
- Focus on computation of fitting places (post-processing based on existing results)

Our Approach – Evaluation

(experiments using randomized activity orderings, noise threshold = 1)

Our Approach – Evaluation

(experiments using randomized activity orderings, noise threshold = 1)

(experiments using randomized activity orderings, noise threshold = 1)

Brute Force

Tree Cutting

Tree Cutting

Tree Cutting Min

Average

Max

Our Approach – Conclusion

Current Approach

- **High Fitness & Precision**
- **Complex Structures**
- Improved Noise Handling
- Much faster than Brute Force

Future Work

- Improve Efficiency
- Improve Simplicity
- Explore extensions of the concept

Time Efficiency

Our Approach – Conclusion

Current Approach

- High Fitness & Precision
- Complex Structures
- Improved Noise Handling
- Much faster than Brute Force

Future Work

of Process

- Improve Efficiency
- Improve Simplicity
- Explore extensions of the concept

Thank your for your attention! Questions?

