
Finding Complex Process-
Structures by Exploiting
the Token-Game

Lisa L. Mannel, Wil M. P. van der Aalst
June 27th, 2019

Process Discovery
Introducing the Problem

2

Process Discovery - Introduction

Input: Event Log

● Multiset of traces (sequences) of

activities

● Interpretable as a finite language

Example:
Set of Activities: A = {a, b, c, d, e,⯈,⯀}

L = {{ (⯈,a,c,d,⯀)3, (⯈,b,c,e,⯀)5 }}

Output: Process Model

● Petri Nets (subset)

3

Process Discovery - Introduction

4

Fitness

Precision

Simplicity

Time

Efficiency

Noise

Handling

Input: Event Log

● Multiset of traces (sequences) of

activities

● Interpretable as a finite language

Example:
Set of Activities: A = {a, b, c, d, e,⯈,⯀}

L = {{ (⯈,a,c,d,⯀)3, (⯈,b,c,e,⯀)5 }}

Process Discovery - Introduction

5

Fitness

Precision

Simplicity

Time

Efficiency

Noise

Handling

Input: Event Log

● Multiset of traces (sequences) of

activities

● Interpretable as a finite language

Example:
Set of Activities: A = {a, b, c, d, e,⯈,⯀}

L = {{ (⯈,a,c,d,⯀)3, (⯈,b,c,e,⯀)5 }}

Process Discovery – Related Work

Region-based approaches

● High fitness & precision

● Can find complex structures

● Low simplicity (‘Spaghetti’-Models)

● Cannot handle infrequent behavior

6

Fitness

Precision

Simplicity

Time

Efficiency

Noise

Handling

Process Discovery – Related Work

Region-based approaches

● High fitness & precision

● Can find complex structures

● Low simplicity (‘Spaghetti’-Models)

● Cannot handle infrequent behavior

Our approach

(inspired by language-based regions)

● High fitness & precision

● Can find complex structures

 Improve simplicity

 Handle infrequent behavior

7

Fitness

Precision

Simplicity

Time

Efficiency

Noise

Handling

Our Approach
An Overview

8

Our Approach – General Idea

1. Input: Log & Threshold
○ Special start/end activities

attached to each trace

○ Initialize Petri net without places

○ Each transition corresponds to

one activity

2. Evaluate all possible places
○ find all fitting places

○ high fitness and precision

3. Post-processing
○ Remove implicit places

9

1. Input: Log & Threshold
○ Special start/end activities

attached to each trace

○ Initialize Petri net without places

○ Each transition corresponds to

one activity

2. Evaluate all possible places
○ find all fitting places

○ high fitness and precision

3. Post-processing
○ Remove implicit places

Our Approach – General Idea

10

Our Approach – General Idea

1. Input: Log & Threshold
○ Special start/end activities

attached to each trace

○ Initialize Petri net without places

○ Each transition corresponds to

one activity

2. Evaluate all possible places
○ find all fitting places

○ high fitness and precision

3. Post-processing
○ Remove implicit places

● Definition of Places:

(I | O) – incoming & outgoing activities

● Number of candidate places:

|P(A)| * |P(A)|  2|A| * 2|A|

Exponential in the number of activities!

For example: |A|=10  1,048,576

● Brute Force: play the token game for

each trace on each candidate place

 Increase efficiency

 Handle infrequent behavior

11

Our Approach – Monotonicity Results

Underfed Places Overfed Places

12

Our Approach – Monotonicity Results

Underfed Places Overfed Places

13

Use threshold for

infrequent behavior!

Our Approach – Running Example
L= {{ (⯈,a,b,⯀) }}  Transitions = {⯈,a,b,⯀}

14

Our Approach – Running Example
L= {{ (⯈,a,b,⯀) }}  Transitions = {⯈,a,b,⯀}

15

Our Approach – Running Example
L= {{ (⯈,a,b,⯀) }}  Transitions = {⯈,a,b,⯀}

16

Our Approach – Running Example
L= {{ (⯈,a,b,⯀) }}  Transitions = {⯈,a,b,⯀}

17

Our Approach – Running Example
L= {{ (⯈,a,b,⯀) }}  Transitions = {⯈,a,b,⯀}

18

Traversal Strategy:

• Exploit monotonicity

• Find all fitting places

• Visit each place at most once

• Limited storage

Our Approach – Running Example
L= {{ (⯈,a,b,⯀) }}  Transitions = {⯈,a,b,⯀}

19

Traversal Strategy:

• Exploit monotonicity

• Find all fitting places

• Visit each place at most once

• Limited storage

Our Approach – Running Example
L= {{ (⯈,a,b,⯀) }}  Transitions = {⯈,a,b,⯀}

20

Traversal Strategy:

• Exploit monotonicity

• Find all fitting places

• Visit each place at most once

• Limited storage

Our Approach – Running Example
L= {{ (⯈,a,b,⯀) }}  Transitions = {⯈,a,b,⯀}

21

Our Approach – Running Example
L= {{ (⯈,a,b,⯀) }}  Transitions = {⯈,a,b,⯀}

22

Our Approach – Running Example
L= {{ (⯈,a,b,⯀) }}  Transitions = {⯈,a,b,⯀}

23

Our Approach – Running Example
L= {{ (⯈,a,b,⯀) }}  Transitions = {⯈,a,b,⯀}

24

Our Approach – Running Example
L= {{ (⯈,a,b,⯀) }}  Transitions = {⯈,a,b,⯀}

25

Our Approach – Running Example
L= {{ (⯈,a,b,⯀) }}  Transitions = {⯈,a,b,⯀}

26

Our Approach – Running Example
L= {{ (⯈,a,b,⯀) }}  Transitions = {⯈,a,b,⯀}

27

Our Approach – Running Example
L= {{ (⯈,a,b,⯀) }}  Transitions = {⯈,a,b,⯀}

28

Our Approach – Running Example
L= {{ (⯈,a,b,⯀) }}  Transitions = {⯈,a,b,⯀}

29

Deterministic DFS

based on activity

ordering

 ordering

determines position

of place in tree

Our Approach – Running Example
L= {{ (⯈,a,b,⯀) }}  Transitions = {⯈,a,b,⯀}

30

Our Approach – Running Example
L= {{ (⯈,a,b,⯀) }}  Transitions = {⯈,a,b,⯀}

31

Post-processing:

removal of implicit places

(existing approaches)

Our Approach
Evaluation

32

Our Approach – Evaluation

● Implemented in ProM, using Java

● Focus on computation of fitting places
(post-processing based on existing results)

33

Our Approach – Evaluation

34

(experiments using randomized activity orderings, noise threshold = 1)

Our Approach – Evaluation

35

(experiments using randomized activity orderings, noise threshold = 1)

Our Approach – Evaluation

36

Cut-off: 0.8

#Activities: 13

#Traces: 231

(experiments using randomized activity orderings, noise threshold = 1)

Cut-off: 0.95

#Activities: 11

#Traces: 595

Cut-off: 0.6

#Activities: 11

#Traces: 27

Our Approach – Conclusion

Current Approach

● High Fitness & Precision

● Complex Structures

● Improved Noise Handling

● Much faster than Brute Force

Future Work

● Improve Efficiency

● Improve Simplicity

● Explore extensions of the concept

37

Fitness

Precision

Simplicity

Time

Efficiency

Noise

Handling

Our Approach – Conclusion

Current Approach

● High Fitness & Precision

● Complex Structures

● Improved Noise Handling

● Much faster than Brute Force

Future Work

● Improve Efficiency

● Improve Simplicity

● Explore extensions of the concept

38

Fitness

Precision

Simplicity

Time

Efficiency

Noise

Handling

Thank your for your attention!
Questions?

39

