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Process Discovery
Introducing the Problem
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Process Discovery - Introduction

Input: Event Log

● Multiset of traces (sequences) of 

activities

● Interpretable as a finite language

Example:
Set of Activities: A = {a, b, c, d, e,⯈,⯀}

L = {{ (⯈,a,c,d,⯀)3, (⯈,b,c,e,⯀)5 }}

Output: Process Model

● Petri Nets (subset)
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Input: Event Log

● Multiset of traces (sequences) of 

activities

● Interpretable as a finite language

Example:
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Process Discovery – Related Work

Region-based approaches

● High fitness & precision 

● Can find complex structures

● Low simplicity (‘Spaghetti’-Models)

● Cannot handle infrequent behavior
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Process Discovery – Related Work

Region-based approaches

● High fitness & precision 

● Can find complex structures

● Low simplicity (‘Spaghetti’-Models)

● Cannot handle infrequent behavior

Our approach

(inspired by language-based regions)

● High fitness & precision

● Can find complex structures

 Improve simplicity

 Handle infrequent behavior
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Our Approach
An Overview
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Our Approach – General Idea

1. Input: Log & Threshold
○ Special start/end activities 

attached to each trace

○ Initialize Petri net without places

○ Each transition corresponds to 

one activity

2. Evaluate all possible places
○ find all fitting places

○ high fitness and precision

3. Post-processing 
○ Remove implicit places
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Our Approach – General Idea

1. Input: Log & Threshold
○ Special start/end activities 

attached to each trace

○ Initialize Petri net without places

○ Each transition corresponds to 

one activity

2. Evaluate all possible places
○ find all fitting places

○ high fitness and precision

3. Post-processing 
○ Remove implicit places

● Definition of Places:

( I | O ) – incoming & outgoing activities

● Number of candidate places:

|P(A)| * |P(A)|  2|A| * 2|A|

Exponential in the number of activities!

For example: |A|=10  1,048,576

● Brute Force: play the token game for 

each trace on each candidate place

 Increase efficiency

 Handle infrequent behavior
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Our Approach – Monotonicity Results

Underfed Places Overfed Places
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Our Approach – Monotonicity Results

Underfed Places Overfed Places
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Use threshold for 

infrequent behavior!



Our Approach – Running Example
L= {{ (⯈,a,b,⯀) }}    Transitions = {⯈,a,b,⯀}
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Traversal Strategy:

• Exploit monotonicity

• Find all fitting places

• Visit each place at most once

• Limited storage
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Deterministic DFS 

based on activity 

ordering 

 ordering 

determines position 

of place in tree
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Post-processing:

removal of implicit places

(existing approaches)



Our Approach
Evaluation
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Our Approach – Evaluation

● Implemented in ProM, using Java

● Focus on computation of fitting places
(post-processing based on existing results)
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Our Approach – Evaluation
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(experiments using randomized activity orderings, noise threshold = 1)
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Our Approach – Evaluation
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Cut-off: 0.8

#Activities: 13

#Traces: 231

(experiments using randomized activity orderings, noise threshold = 1)

Cut-off: 0.95

#Activities: 11

#Traces: 595

Cut-off: 0.6

#Activities: 11

#Traces: 27



Our Approach – Conclusion

Current Approach

● High Fitness & Precision

● Complex Structures

● Improved Noise Handling

● Much faster than Brute Force

Future Work

● Improve Efficiency

● Improve Simplicity

● Explore extensions of the concept
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Thank your for your attention!
Questions?
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