Solving E (φ U ψ) using the CEGAR Approach

Torsten Liebke and Karsten Wolf

University of Rostock

Reachability problem

Given: bounded Petri net N = [P,T,F,W,m₀]

Question: Exists marking m', which is element $F_{F} \phi$ of the reachability graph $R_N(m_0)$: m' $\in R_N(m_0)$

Problem: state explosion

Solution approach: structural analysis

EF ϕ – Exists a path, where finally ϕ holds?

Success story for structural analysis for EF $\boldsymbol{\varphi}$

In 2011 Harro Wimmel and Karsten Wolf: Applying CEGAR to the Petri net state equation

Tool: *Sara,* won trophies in the MCC'2013 *Sara*-integration in *LoLA* increased the performance from 75 % to 90 % in MCC'2016

Sara

MCC'2013

LoLA

MCC'2016

Petri net state equation

State equation: $m + C_N \cdot P(w) = m'$

- C_N = incidence matric, P(w) = Parikh vector
- Necessary condition for reachability
- Integer Linear Programming (ILP) problem can be solved with any ILP-solver

State equation outcome

If the ILP problem is infeasible, the necessary condition is violated and the final marking is not reachable.

If the ILP problem has a realizable solution, then the final marking is reachable.

(realizable = firing sequence of the solution is executable)

If the ILP problem has an unrealizable solution, which is a counterexample, then the abstraction has to be refined. Y

Counter Example Guided Abstraction Refinement (CEGAR) approach

Not realizable

- Given: solution vector P(w) of the ILP-problem
- Problem: not all transitions of P(w) can fire

=> some places (called scapegoats) have not enough tokens

• **Solution:** we need to transfer or borrow tokens to fill the scapegoat places

Refining the abstraction

Initial abstraction: state equation

Target function: minimize solution vector

 \Rightarrow # of transition should be minimal

Not realizable:

- Add constraints to get a new solution
- Constraints: linear inequalities over transitions Add: $|t_0| > 0$

Borrowing tokens with transitioninvariants

- P(w) is called a T-invariant if $C_N \cdot P(w) = 0$
- A fired T-invariant does not change the marking
- T-invariant uu' can borrow tokens to the
 - T-invariant tt'

Adding constraints

Jump constraints:

- Base solutions are pairwise incomparable
- Intend to generate a new base solution

Increment constraints:

- Generate a new non-base solution
- I.e., T-invariants are added
- interleaving with another sequence w may turn w from unrealizable to realizable

Torsten Liebke (Rostock)

Solution Space

- Minimal solution b
- Black dots represent other solutions
- Dashed arrows are jumps
- Normal arrows are increment arrows (T-inv.)
- Cones are the linear solution spaces

Solving E ($\phi \cup \psi$) using the CEGAR Approach

Results of applying CEGAR to the Petri net state equation

- Finds positive and negative results
- Especially good for negative results
 - ⇒ Quite often and quite fast the ILP-problem becomes infeasible
 - \Rightarrow No need to explore the state space

apply this technique to other formulas

Goal

Applying structural analysis on different formulas

Delta of a transition

- ϕ has the form s = k₁p₁ + ... + k_np_n \leq k
- Delta of a transition w.r.t. φ, is the effect of the transition regarding the truth value of φ.
- Formal: $\Delta_{t,\phi} = k_1 C_N(p_1,t) + ... + k_n C_N(p_n,t)$

Increasing / decreasing transitions

Transition t is called:

- Decreasing iff $\Delta_{t,\phi} > 0$; tendency to turn a true proposition into a false one
- Increasing iff Δ_{t,φ} < 0; tendency to turn a false proposition into a true one

Ε(φυψ)

Idea:

E ($\phi \cup \psi$) = EF ψ and keep ϕ true in every state along the path.

We only care about transitions, that can change ϕ : $T_{\phi} = \{t \in T \mid \Delta_{t,\phi} \neq 0\}$

E ($\phi \cup \psi$) – Exists a path, where ϕ is true in every state along the path until a state is reached where ψ holds?

Add balance constraints

Balance constraints, ensure that ϕ is true after firing the complete ILP-solution.

- $\sum_{t \in \mathsf{T}_{\phi}} \Delta_{t,\phi} \leq \text{offset}$; offset w.r.t. the initial marking
- Only one ("last") transition is allowed to make φ false, when it makes ψ true at the same time.

Example for balance constraints

- E (p₂ > 0) U (p₄ > 0)
- Minimal solution is t₂t₃
- t₂ is decreasing w.r.t. p₂ > 0

Balance constraints adds t₁, which is increasing

E ($p_2 > 0$) U ($p_4 > 0$) can be rewritten into the form s \leq k: E ($-p_2 \leq -1$) U ($-p_4 \leq -1$)

Keeping φ true

- After getting a solution P(w)
- We're looking for the maximal realizable firing sequence
- \bullet In the brute force tree we cut-off paths that violate φ

EF ψ guides the search and the balance constraints and the cut-off criterion are keeping ϕ true along the path.

 $E(p_1 + p_2 > 0) U(p_3 > 0)$

- $E(p_1 + p_2 > 0) U(p_3 > 0)$
- Minimal solution: t₀t₁

- $E(p_1 + p_2 > 0) U(p_3 > 0)$
- Minimal solution: t₀t₁
- Violates (p₁ + p₂ > 0) and is cut off

- $E(p_1 + p_2 > 0) U(p_3 > 0)$
- Minimal solution: t₀t₁
- Violates (p₁ + p₂ > 0) and is
 cut off
- CEGAR: jump to next base solution: t₂t₃

- $E(p_1 + p_2 > 0) U(p_3 > 0)$
- Minimal solution: t₀t₁
- Violates (p₁ + p₂ > 0) and is up to the second secon
- CEGAR: jump to next base solution: t_2t_3
- Is only partial solution: t₂ cannot fire
- (also t₃ cannot fire)

$E(p_1 + p_2 > 0) U(p_3 > 0)$

- Minimal solution: t₀t₁
- Violates (p₁ + p₂ > 0) and is
 cut off
- CEGAR: jump to next base
- solution: t₂t₃
- Is only partial solution: t₂ cannot fire
- CEGAR: increment solution with T-invariant t₄t₅
- Full solution: t₅t₂t₃(t₄)

(EX)^k φ

- (EX)^k φ Exists a path, where φ holds in the k-th state?
- Add **length constraint**, which ensures, that the solution contains exactly k transitions:

Future work

- Implementing it into LoLA
- We expect promising results, especially for negative results
- Could be a building brick
- Try to solve more complex formulas

Time for discussion!

