Solving E (ϕ U ψ) using the CEGAR Approach

Torsten Liebke and Karsten Wolf

University of Rostock

Reachability problem

Given: bounded Petri net $N = [P,T,F,W,m_0]$

Question: Exists marking m', which is element _{EF φ} of the reachability graph $R_N(m_0)$: m' $\in R_N(m_0)$

Problem: state explosion

Solution approach: structural analysis

EF ϕ – Exists a path, where finally φ holds?

Success story for structural analysis for EF φ

In 2011 Harro Wimmel and Karsten Wolf: *Applying CEGAR to the Petri net state equation*

Tool: *Sara,* won trophies in the MCC'2013

Sara-integration in *LoLA* increased the performance from 75 % to 90 % in MCC'2016

Sara

MCC'2013

LoLA

MCC'2016

Petri net state equation

State equation: $m + C_N \cdot P(w) = m'$

- $\cdot C_N$ = incidence matric, P(w) = Parikh vector
- •Necessary condition for reachability
- Integer Linear Programming (ILP) problem can be solved with any ILP-solver

State equation outcome

If the ILP problem is infeasible, the necessary condition is violated and the final marking is not reachable.

If the ILP problem has a realizable solution, then the final marking is reachable.

(realizable = firing sequence of the solution is executable)

If the ILP problem has an unrealizable solution, which is a counterexample, then the abstraction has to be refined.

Solving E (φ U ψ) using the CEGAR Approach 6 Torsten Liebke (Rostock) 6 Torsten Liebke

Y

Counter Example Guided Abstraction Refinement (CEGAR) approach

Not realizable

- •**Given:** solution vector P(w) of the ILP-problem
- •**Problem:** not all transitions of P(w) can fire

=> some places (called scapegoats) have not enough tokens

• **Solution:** we need to transfer or borrow tokens to fill the scapegoat places

Refining the abstraction

Initial abstraction: state equation

Target function: minimize solution vector

 \Rightarrow # of transition should be minimal

Not realizable:

- •Add constraints to get a new solution
- •Constraints: linear inequalities over transitions Add: $|t_0| > 0$

Borrowing tokens with transitioninvariants

- P(w) is called a T-invariant if $C_N \cdot P(w) = 0$
- •A fired T-invariant does not change the marking
- **T-invariant uu' can borrow tokens to the**
	- **T-invariant tt'**

Adding constraints

Jump constraints:

- •Base solutions are pairwise incomparable
- Intend to generate a new base solution

Increment constraints:

- •Generate a new non-base solution
- •I.e., T-invariants are added
- interleaving with another sequence w may turn w from unrealizable to realizable

Solution Space

- •Minimal solution b
- •Black dots represent other solutions
- •Dashed arrows are jumps
- •Normal arrows are increment arrows (T-inv.)
- •Cones are the linear solution spaces

Solving E (φ U ψ) using the CEGAR Approach 12

Results of applying CEGAR to the Petri net state equation

- Finds positive and negative results
- Especially good for negative results
	- \Rightarrow Quite often and quite fast the ILP-problem becomes infeasible
	- \Rightarrow No need to explore the state space

Goal apply this technique to other formulas

Applying structural analysis on different formulas

Delta of a transition

- • ϕ has the form s = $k_1p_1 + ... + k_np_n \leq k$
- •Delta of a transition w.r.t. φ, is the effect of the transition regarding the truth value of φ.
- Formal: $\Delta_{t,\phi} = k_1 C_N(p_1,t) + ... + k_n C_N(p_n,t)$

Increasing / decreasing transitions

Transition t is called:

- Decreasing iff $\Delta_{t,\phi} > 0$; tendency to turn a true proposition into a false one
- Increasing iff $\Delta_{t,\phi}$ < 0; tendency to turn a false proposition into a true one

 $\cdot \phi = 2p_2 + 4p_3 \leq 5$ \cdot m₀ $\not\models$ Φ • t_1 is decreasing; $\Delta_{t1,\phi}$ = 2 • t_3 is increasing; $\Delta_{t3,\phi} = -4$

E (φ U ψ)

Idea:

E (φ U ψ) = EF ψ and keep φ true in every state along the path.

We only care about transitions, that can change ϕ : T_φ = {t \in T | $\Delta_{t,\phi} \neq 0$ }

E (φ U ψ) – Exists a path, where φ is true in every state along the path until a state is reached where ψ holds?

Add balance constraints

Balance constraints, ensure that ϕ is true after firing the complete ILP-solution.

- $\bullet \sum_{t \in \mathsf{T}_\varphi} \Delta_{\mathsf{t},\,\varphi} \leq \mathsf{offset}$; offset w.r.t. the initial marking
- Only one ("last") transition is allowed to make Φ false, when it makes ψ true at the same time.

Example for balance constraints

- $E(p_2 > 0)$ U $(p_4 > 0)$
- Minimal solution is t_2t_3
- t_2 is decreasing w.r.t. $p_2 > 0$

• Balance constraints adds t_1 , which is increasing

E ($p_2 > 0$) U ($p_4 > 0$) can be rewritten into the form s $\leq k$: E (-p₂ \le -1) U (-p₄ \le -1)

Keeping φ true

- After getting a solution P(w)
- •We're looking for the maximal realizable firing sequence
- •In the brute force tree we cut-off paths that violate φ

EF ψ guides the search and the balance constraints and the cut-off criterion are keeping φ true along the path.

E $(p_1 + p_2 > 0)$ U $(p_3 > 0)$

- E $(p_1 + p_2 > 0)$ U $(p_3 > 0)$
-

- E ($p_1 + p_2 > 0$) U ($p_3 > 0$)
- Minimal solution: t_0t_1
- Violates $(p_1 + p_2 > 0)$ and is cut off

- E $(p_1 + p_2 > 0)$ U $(p_3 > 0)$
- Minimal solution: t_0t_1
- Violates $(p_1 + p_2 > 0)$ and is cut off
- •CEGAR: jump to next base solution: t_2t_3

- E $(p_1 + p_2 > 0)$ U $(p_3 > 0)$
- Minimal solution: t_0t_1
- Violates $(p_1 + p_2 > 0)$ and is cut off
- •CEGAR: jump to next base solution: t_2t_3
- Is only partial solution: t_2 cannot fire
- (also t_3 cannot fire)

E $(p_1 + p_2 > 0)$ U $(p_3 > 0)$

- Minimal solution: t_0t_1
- Violates $(p_1 + p_2 > 0)$ and is cut off
- •CEGAR: jump to next base
- solution: t_2t_3
- Is only partial solution: $t₂$ cannot fire
- CEGAR: increment solution with T-invariant t_4t_5
- Full solution: $t_5t_2t_3(t_4)$

 $p₅$

$(EX)^k$ φ

- \bullet (EX)^k Φ Exists a path, where Φ holds in the k-th state?
- •Add **length constraint**, which ensures, that the solution contains exactly k transitions:

Future work

- •Implementing it into LoLA
- •We expect promising results, especially for negative results
- •Could be a building brick
- Try to solve more complex formulas

Time for discussion!

