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Can a single transition t 

stop an entire Petri net? 

If transition t does not occur anymore 

eventually, then eventually no transition 

of the net can occur, i.e., then the net 

eventually terminates. 

Stopping t causes a 

shutdown process 
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b  

 a 

c  

a does not stop the net 

b and c stop the net 
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transition t stops its net 

for each reachable marking m: 

m does not enable an infinite occurrence 

sequence without occurrences of t 
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transition t stops its net 

the initial marking m0 does not enable  

an infinite occurrence sequence  

with only finitely many occurrences of t 

 

Problem of this paper: 

How can we decide if t stops its net? 
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transition t stops its net 

the initial marking m0 does not enable  

an infinite occurrence sequence  

with only finitely many occurrences of t 

 

Solution 1:  

Solve the LTL-formula  

allways eventually t 

(can be very inefficient)  
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transition t stops its net 

the initial marking does not enable  

an infinite occurrence sequence  

with only finitely many occurrences of t 

 

Solution 2:  

Use Petri net analysis techniques! 



How can we decide if a transition t 
stops its net? 
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(simple) Theorem: 

transition t stops the (bounded) net if and only if  

each cycle of the reachability graph contains an edge labeled by t   

 

1st case: the net is bounded 



How can we decide if a transition t 
stops its net? 
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1st case: the net is bounded 

t 



How can we decide if a transition t 
stops its net? 
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Algorithm: 

- construct the reachability graph  

- delete all edges labelled by t 

- check if the remaining graph (which is not necessarily connected)  

  has a cycle  

 

1st case: the net is bounded 



How can we decide if a transition t 
stops its net? 
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1st case: the net is bounded 

t 



How can we decide if a transition t 
stops its net? 
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2nd  case: the net is unbounded 

d  b 

c  a e  

which transitions stop the net? 



How can we decide if a transition t 
stops its net? 
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2nd  case: the net is unbounded 

d  b 

c  a e  

which transitions stop the net? 

a and b 



How can we decide if a transition t 
stops its net? 
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d  b 

c  a e  

(1,0,0,0,0) (0,1,1,0,0) (0,0,1,1,0) (0,0,0,0,1) (0,0,0,1,0) 
b c d e 

coverability graph 



How can we decide if a transition t 
stops its net? 
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d  b 

c  a e  

(1,0,0,0,0) (0,1,1,0,0) (0,0,1,1,0) (0,0,0,0,1) (0,0,0,1,0) 
b c d e 

(1,0,1,0,0) 

a 

(1,0,ω,0,0) 

coverability graph 



How can we decide if a transition t 
stops its net? 
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d  b 

c  a e  

(1,0,0,0,0) (0,1,1,0,0) (0,0,1,1,0) (0,0,0,0,1) (0,0,0,1,0) 
b c d e 

a 

(1,0,ω,0,0) 
b 

(0,1,ω,0,0) (0,0,ω,1,0) (0,0,ω,0,1) 
c d 

a e 

coverability graph 



How can we decide if a transition t 
stops its net? 
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d  b 

c  a e  

(1,0,0,0,0) (0,1,1,0,0) (0,0,1,1,0) (0,0,0,0,1) (0,0,0,1,0) 
b c d e 

a 

(1,0,ω,0,0) 
b 

(0,1,ω,0,0) (0,0,ω,1,0) (0,0,ω,0,1) 
c d 

a e 

two cycles 



How can we decide if a transition t 
stops its net? 
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d  b 

c  a e  

(1,0,0,0,0) (0,1,1,0,0) (0,0,1,1,0) (0,0,0,0,1) (0,0,0,1,0) 
b c d e 

a 

(1,0,ω,0,0) 
b 

(0,1,ω,0,0) (0,0,ω,1,0) (0,0,ω,0,1) 
c d 

a e 

two cycles – no help (they do not distinguish a/b and c/d/e) 



How can we decide if a transition t 
stops its net? 
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1 d  b 

0 c  

0 

a 0 

0    

e  

(1,0,ω,0,0) 
b 

(0,1,ω,0,0) 
a 

effect of a cycle 



How can we decide if a transition t 
stops its net? 
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d  b 

0 c  

0 

a 0 

0    

e  

(0,0,ω,1,0) (0,0,ω,0,1) 
d 

e 

effect of a cycle 

-1 



How can we decide if a transition t 
stops its net? 
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d  b 

c  a e  

(1,0,ω,0,0) 
b 

(0,1,ω,0,0) (0,0,ω,1,0) (0,0,ω,0,1) 
d 

a e 

- the effect of a cycle is 0 for non-ω-marked places 

  (and hence 0 everywhere for bounded nets) 

- for ω-marked places, the effect of a cycle can be  

negative, 0, or positive 



How can we decide if a transition t 
stops its net? 
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d  b 

0 c  

0 

a 0 

0    

e  

(0,0,ω,1,0) (0,0,ω,0,1) 
d 

e 

-1 

- cycles with negative effect on a place cannot cycle infinitely 

(decreasing cycle) 

 

- cycles without negative effect on a place can cycle infinitely 

(non-decreasing cycle) 

 



How can we decide if a transition t 
stops its net? 
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d  b 

c  a e  

(1,0,0,0,0) (0,1,1,0,0) (0,0,1,1,0) (0,0,0,0,1) (0,0,0,1,0) 
b c d e 

a 

(1,0,ω,0,0) 
b 

(0,1,ω,0,0) (0,0,ω,1,0) (0,0,ω,0,1) 
c d 

a e 

non-decreasing cycle decreasing cycle 

 

Theorem: 

A transition t stops its net if and only if  

each non-decreasing cycle of the coverability graph contains an edge 

labeled by t   

 



How can we decide if a transition t 
stops its net? 
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d  b 

c  a e  

(1,0,0,0,0) (0,1,1,0,0) (0,0,1,1,0) (0,0,0,0,1) (0,0,0,1,0) 
b c d e 

a 

(1,0,ω,0,0) 
b 

(0,1,ω,0,0) (0,0,ω,1,0) (0,0,ω,0,1) 
c d 

a e 

non-decreasing cycle decreasing cycle 



How can we decide if a transition t 
stops its net? 
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d  b 

c  a e  

(1,0,0,0,0) (0,1,1,0,0) (0,0,1,1,0) (0,0,0,0,1) (0,0,0,1,0) 
b c d e 

a 

(1,0,ω,0,0) 
b 

(0,1,ω,0,0) (0,0,ω,1,0) (0,0,ω,0,1) 
c d 

a e 

non-decreasing cycle decreasing cycle 

 

Theorem: 

A transition t stops its net if and only if  

each non-decreasing cycle of the coverability graph contains an edge 

labeled by t   

 

 

Theorem (bounded case): 

A transition t stops its net if and only if  

each cycle of the reachability graph contains an edge labeled by t   

 



How can we decide if a transition t 
stops its net? 
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d  b 

c  a e  

(1,0,0,0,0) (0,1,1,0,0) (0,0,1,1,0) (0,0,0,0,1) (0,0,0,1,0) 
b c d e 

a 

(1,0,ω,0,0) 
b 

(0,1,ω,0,0) (0,0,ω,1,0) (0,0,ω,0,1) 
c d 

a e 

non-decreasing cycle decreasing cycle 

 

Algorithm  

-    Construct the coverability graph 

- Check if each non-decreasing cycle contains an edge labeled by t 

(if the net is bounded, then  

 - coverability graph = reachability graph 

 - all cycles are non-decreasing) 

 

Problem: 

there are infinitely many cycles  

(not only elementary cycles)  
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Does transition i stop the net ?   No! 

 

-   the cycle i is non-decreasing, but contains i 

- the cycle a is not non-decreasing 

- the cycle b is not non-decreasing 

 

 
- the cycle ab is non-decreasing and does not contain i  

 

 

So we have to consider arbitrary cycles (closed paths), 

not only elementary cycles 
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Properties of relevant cycles (closed paths) p: 

 
(1) The subgraph generated by p is strongly connected 

 

(2) For each vertex: # ingoing arcs in p = # outgoing arcs in p 

 

(3) All vertices of p have the same ω-marked places 

 

(4) For each ω-marked place s:   # u  s in p  ≥  # u  s in p 

 

(5) No arc in p is marked by transition t   (in the example: i)  
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Properties of relevant cycles (closed paths) p: 

 
 

(1) The subgraph generated by p is strongly connected 

 
 

(2) For each vertex: # ingoing arcs in p = # outgoing arcs in p 

 

 

(3) All vertices of p have the same ω-marked places 

 
 

(4) For each ω-marked place s:   # u  s in p  ≥  # u  s in p 

 
 

(5) No arc in p is marked by transition t  
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Let (a1, a2, a3, ….) denote the arcs of the coverability graph. 
 

Properties of relevant cycles (closed paths) p: 

Properties of relevant multisets (x1, x2, x3, ….) of arcs: 
 

(1) The subgraph generated by p is strongly connected 

 
 

(2) For each vertex: # ingoing arcs in p = # outgoing arcs in p 

 

 

(3) All vertices of p have the same ω-marked places 

 
 

(4) For each ω-marked place s:   # u  s in p  ≥  # u  s in p 

 
 

(5) No arc in p is marked by transition t  

 
 

 

The multiset is actually  
x1a1 + x2a2 + … 
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Let (a1, a2, a3, ….) denote the arcs of the coverability graph. 
 

Properties of relevant cycles (closed paths) p: 

Properties of relevant multisets (x1, x2, x3, ….) of arcs: 
 

(1) The subgraph generated by p is strongly connected 

(1) The subgraph generated by (x1, x2, x3, ….) is strongly connected 
 

(2) For each vertex: # ingoing arcs in p = # outgoing arcs in p 

 
 

(3) All vertices of p have the same ω-marked places 

 
 

(4) For each ω-marked place s:   # u  s in p  ≥  # u  s in p 

 
 

(5) No arc in p is marked by t  
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Let (a1, a2, a3, ….) denote the arcs of the coverability graph. 
 

Properties of relevant cycles (closed paths) p: 

Properties of relevant multisets (x1, x2, x3, ….) of arcs: 
 

(1) The subgraph generated by p is strongly connected 

(1) The subgraph generated by (x1, x2, x3, ….) is strongly connected 
 

(2) For each vertex: # ingoing arcs in p = # outgoing arcs in p 

(2) For each vertex v: 
 

(3) All vertices of p have the same ω-marked places 

 
 

(4) For each ω-marked place s:   # u  s in p  ≥  # u  s in p 

 
 

(5) No arc in p is marked by t  
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Let (a1, a2, a3, ….) denote the arcs of the coverability graph. 
 

Properties of relevant cycles (closed paths) p: 

Properties of relevant multisets (x1, x2, x3, ….) of arcs: 
 

(1) The subgraph generated by p is strongly connected 

(1) The subgraph generated by (x1, x2, x3, ….) is strongly connected 
 

(2) For each vertex: # ingoing arcs in p = # outgoing arcs in p 

(2) For each vertex v: 
 

(3) All vertices of p have the same ω-marked places 

(3) If an arc ai connects vertices with different ω-marked places then xi = 0 
 

(4) For each ω-marked place s:   # u  s in p  ≥  # u  s in p 

 
 

(5) No arc in p is marked by t  
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Let (a1, a2, a3, ….) denote the arcs of the coverability graph. 
 

Properties of relevant cycles (closed paths) p: 

Properties of relevant multisets (x1, x2, x3, ….) of arcs: 
 

(1) The subgraph generated by p is strongly connected 

(1) The subgraph generated by (x1, x2, x3, ….) is strongly connected 
 

(2) For each vertex: # ingoing arcs in p = # outgoing arcs in p 

(2) For each vertex v: 
 

(3) All vertices of p have the same ω-marked places 

(3) If an arc ai connects vertices with different ω-marked places then xi = 0 
 

(4) For each ω-marked place s:   # u  s in p  ≥  # u  s in p 

(4) For each ω-marked place s: 
 

(5) No arc in p is marked by t  
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Let (a1, a2, a3, ….) denote the arcs of the coverability graph. 
 

Properties of relevant cycles (closed paths) p: 

Properties of relevant multisets (x1, x2, x3, ….) of arcs: 
 

(1) The subgraph generated by p is strongly connected 

(1) The subgraph generated by (x1, x2, x3, ….) is strongly connected 
 

(2) For each vertex: # ingoing arcs in p = # outgoing arcs in p 

(2) For each vertex v: 
 

(3) All vertices of p have the same ω-marked places 

(3) If an arc ai connects vertices with different ω-marked places then xi = 0 
 

(4) For each ω-marked place s:   # u  s in p  ≥  # u  s in p 

(4) For each ω-marked place s: 
 

(5) No arc in p is marked by t  

(5) If ai is labeled by t  then xi = 0 
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Let (a1, a2, a3, ….) denote the arcs of the coverability graph. 
 

Properties of relevant cycles (closed paths) p: 

Properties of relevant multisets (x1, x2, x3, ….) of arcs: 
 

(1) The subgraph generated by p is strongly connected 

(1) The subgraph generated by (x1, x2, x3, ….) is strongly connected 
 

(2) For each vertex: # ingoing arcs in p = # outgoing arcs in p 

(2) For each vertex v: 
 

(3) All vertices of p have the same ω-marked places 

(3) If an arc ai connects vertices with different ω-marked places then xi = 0 
 

(4) For each ω-marked place s:   # u  s in p  ≥  # u  s in p 

(4) For each ω-marked place s: 
 

(5) No arc in p is marked by t  

(5) If ai is labeled by t  then xi = 0 
 

(6) x1, x2, x3, …. ≥ 0 
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Let (a1, a2, a3, ….) denote the arcs of the coverability graph. 
 

 

Properties of relevant multisets (x1, x2, x3, ….) of arcs: 
 

 

(1) The subgraph generated by (x1, x2, x3, ….) is strongly connected 
 

 

(2) For each vertex v: 
 

 

(3) If an arc ai connects vertices with different ω-marked places then xi = 0 
 

 

(4) For each ω-marked place s: 
 

 

(5) If ai is labeled by t  then xi = 0 
 

(6) x1, x2, x3, …. ≥ 0 

 

 

Theorem: 

A multiset (x1, x2, x3, ….) of arcs satisfies (1) to (6) 

if and only if 

there is a relevant closed path p such that  

xi denotes the number of occurrences of arc  ai in p 
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Let (a1, a2, a3, ….) denote the arcs of the coverability graph. 
 

 

Properties of relevant multisets (x1, x2, x3, ….) of arcs: 
 

 

(1) The subgraph generated by (x1, x2, x3, ….) is strongly connected 
 

 

(2) For each vertex v: 
 

 

(3) If an arc ai connects vertices with different ω-marked places then xi = 0 
 

 

(4) For each ω-marked place s: 
 

 

(5) If ai is labeled by t   then xi = 0 
 

(6) x1, x2, x3, …. ≥ 0 

 

A Linear Program 

 

Algorithm: 

For each solution (s1, s2, s3, ….) of the Linear Program 

check whether the subgraph generated by (s1, s2, s3, ….) 

is strongly connected. 

If we find such a solution, then t does not stop ist net 

 

Problem: 

there are infinitely many solutions  
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Let (a1, a2, a3, ….) denote the arcs of the coverability graph. 
 

 

Properties of relevant multisets (x1, x2, x3, ….) of arcs: 
 

 

(1) The subgraph generated by (x1, x2, x3, ….) is strongly connected 
 

 

(2) For each vertex v: 
 

 

(3) If an arc ai connects vertices with different ω-marked places then xi = 0 
 

 

(4) For each ω-marked place s: 
 

 

(5) If ai is labeled by t   then xi = 0 
 

(6) x1, x2, x3, …. ≥ 0 

 

A Linear Program 

 

Algorithm: 

For each linear combination of base solutions (s1, s2, s3, ….) 

of the Linear Program check whether the generated subgraph 

generated by (s1, s2, s3, ….) is strongly connected. 

If we find such linear combination, then t does not stop ist net 

 

Each solution is a linear combination of base solutions  

(and there are only finitely many base solutions) 
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Let (a1, a2, a3, ….) denote the arcs of the coverability graph. 
 

 

Properties of relevant multisets (x1, x2, x3, ….) of arcs: 
 

 

(1) The subgraph generated by (x1, x2, x3, ….) is strongly connected 
 

 

(2) For each vertex v: 
 

 

(3) If an arc ai connects vertices with different ω-marked places then xi = 0 
 

 

(4) For each ω-marked place s: 
 

 

(5) If ai is labeled by t   then xi = 0 
 

(6) x1, x2, x3, …. ≥ 0 

 

A Linear Program 

 

Algorithm: 

For each sum of base solutions (s1, s2, s3, ….) 

of the Linear Program check whether the generated subgraph 

generated by (s1, s2, s3, ….) is strongly connected. 

If we find such linear combination, then t does not stop ist net 

 

Replace arbitrary coefficients > 0 by 1  

(the generated subgraph remains the same) 

So we consider all nonempty subsets  

of a set of base solutions 
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In the paper (final section): 

 

 

Algorithm: 

Instead of inspecting all (exponentially many) subsets of base solutions, 

the algorithm runs in linear time in the number of base solutions  

and finds a subset that generates a strongly connected subgraph  

(if such a subgraph exists) 
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Recursive Algorithm: 

For a set of base solutions S  

- construct the subgraph of the coverability graph 

- If this graph is strongly connected then stop (t does not stop its net) 

- for each strongly connected component of the subgraph: 

 - consider the maximal subset S‘  S such that the subgraph 

   generated by S‘ is within the strongly connected component 

 - If S‘ is not empty then call this algorithm for S‘  

 

Initially, call the algorithm for the set of all base solutions. 

If it comes to ist proper end, then stop (t stops its net) 
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For a set of base solutions S  

- construct the subgraph of the coverability graph 

- If this graph is strongly connected then stop (t does not stop its net) 

- for each strongly connected component of the subgraph: 

 - consider the maximal subset S‘  S such that the subgraph    

generated by S‘ is within the strongly connected component 

 - If S‘ is not empty then call this algorithm for S‘  

 

Initially, call the algorithm for the set of all base solutions. 

If it comes to ist proper end, then stop (t stops its net) 
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For a set of base solutions S  

- construct the subgraph of the coverability graph 

- If this graph is strongly connected then stop (t does not stop its net) 

- for each strongly connected component of the subgraph: 

 - consider the maximal subset S‘  S such that the subgraph    

generated by S‘ is within the strongly connected component 

 - If S‘ is not empty then call this algorithm for S‘  

 

Initially, call the algorithm for the set of all base solutions. 

If it comes to ist proper end, then stop (t stops its net) 
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For a set of base solutions S  

- construct the subgraph of the coverability graph 

- If this graph is strongly connected then stop (t does not stop its net) 

- for each strongly connected component of the subgraph: 

 - consider the maximal subset S‘  S such that the subgraph    

generated by S‘ is within the strongly connected component 

 - If S‘ is not empty then call this algorithm for S‘  

 

Initially, call the algorithm for the set of all base solutions. 

If it comes to ist proper end, then stop (t stops its net) 

S’ empty  proper end (t stops its net) 
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For a set of base solutions S  

- construct the subgraph of the coverability graph 

- If this graph is strongly connected then stop (t does not stop its net) 

- for each strongly connected component of the subgraph: 

 - consider the maximal subset S‘  S such that the subgraph    

generated by S‘ is within the strongly connected component 

 - If S‘ is not empty then call this algorithm for S‘  

 

Initially, call the algorithm for the set of all base solutions. 

If it comes to ist proper end, then stop (t stops its net) 
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For a set of base solutions S  

- construct the subgraph of the coverability graph 

- If this graph is strongly connected then stop (t does not stop its net) 

- for each strongly connected component of the subgraph: 

 - consider the maximal subset S‘  S such that the subgraph    

generated by S‘ is within the strongly connected component 

 - If S‘ is not empty then call this algorithm for S‘  

 

Initially, call the algorithm for the set of all base solutions. 

If it comes to ist proper end, then stop (t stops its net) 
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For a set of base solutions S  

- construct the subgraph of the coverability graph 

- If this graph is strongly connected then stop (t does not stop its net) 

- for each strongly connected component of the subgraph: 

 - consider the maximal subset S‘  S such that the subgraph    

generated by S‘ is within the strongly connected component 

 - If S‘ is not empty then call this algorithm for S‘  

 

Initially, call the algorithm for the set of all base solutions. 

If it comes to ist proper end, then stop (t stops its net) 

Strongly connected  t does not stop its net 
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